
Chapter 5

The Theory of Dynamics with

Control

5.1 Introduction

The fact that a chaotic solution eliminates the possibility of long term prediction

of system behaviour induced many reports in the literature of either quenching

chaos or controlling chaos (Ott et al. 1990 and Ditto et al. 1995). Since chaotic

attractors have embedded within them a dense set of unstable periodic orbits,

any one of the unstable periodic orbits can be stabilized to obtain otherwise

unattainable system behaviour. The essential idea is that a chaotic system

explores a relatively large region of state space and the system can be brought

to a desired stable state to improve the performance of the separation technique

by a suitable control algorithm. The first method (OGY) of control of chaos

proposed by Ott et al. (1990) generated appreciable interest in the literature of

chaos. Thereafter, a large number of algorithms for controlling chaos have been

reported in the literature (Ott and Spano 1995, Rhode at al. 1995, Christina and

Collins 1995 and references therein). Broadly speaking there are two classes of

algorithms for controlling chaos, namely (a) Feedback Methods (Ott et al. 1990)

and (b) Non-feedback Methods (Guemez et al. 1994). The first method needs

appreciable information about system behaviour but is comparatively simple

to implement experimentally. The second method is theoretically simple and
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Figure 5 . 1: The schematic representation of the novel control strategy

presented in this work. The control is active during the period corre-

sponding to the shaded area and not active during the period corre-

sponding to the blank area , where each box stands for the period. T of

length 27r/w.

hence it is easy to implement on a computer whereas it is difficult to implement

experimentally in many systems.

The algorithm suggested in this work needs very little information about

system behaviour but is rather easy to implement experimentally. This algo-

rithm can be classified as a Non-feedback control method . Rajasekar and Lak-

shmanan (1993 ) have investigated the applicability and effectiveness of various

approaches of controlling chaos in the BVP oscillator . Suppression of chaos

by periodic parametric perturbations in an experimental set up of a Duffing

oscillator is also reported in the literature by Fronzoni et al. (1991 ). In the

method proposed in this section , the control parameter is perturbed for one

period at fixed intervals of every integral multiple of the fundamental period.

In the methods considered earlier in the literature (Lakshmanan and Murali

1996), the parameter was perturbed continuously rather than at fixed inter-

vals. To implement the control strategy reported in the section 5.2. we apply

a constant external force in addition to the periodic force for the duration of

one period after every n - 1 periods as shown in Fig. 5.1 , where the length

of one period (T) is equal to length of the fundamental period of the periodic

force. If the system is perturbed after n - 1 periods by applying an additional

constant force, the system is found to be stabilized in a periodic orbit with a

period equal to nT or with a period equal to an integral multiple of nT.

For example , if a represents the magnitude of the additional constant force,
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then the control can be implemented by setting a = 0 if j 0 0 mod(n) and

a ,' 0 if j = 0 mod (n) where j represents iteration number and the time

interval between two successive iterations is equal to the fundamental period

T. That is, the system evolves without any modification for periods which are

not multiples of n and with modification for periods which are multiples of n.

A schematic representation of the control strategy is given in Fig. 5.1. The

choice of n depends on the period -m solution we want to stabilize . The integer

n can be either m or a divisor of m depending on the value of a and the choice

of n.

5.2 A new algorithm for control of chaos

To incorporate the above idea of controlling the dynamics of the system, we

modify Eq . 2.21 governing the dynamics of the system by introducing a con-

stant force in addition to the periodic force along the direction of the periodic

force for one period at the end of n forcing periods. Thus the resultant torque

induced on the particle is given by L = (k cos(wt) + k') x u. Let k', k2 and k3

be the x, y, z components of k'. After scaling all quantities appearing in the

equations similarly as explained in the section 2.7, the Eq. 2.21 can be written

as

dO = P
sin 20 sin 20 + R [(cos 0 cos o kl + cos 9 sin ¢ k2 - sin 0 k3) cos(wt)]

do

dt

+R [(cos 9 cos 0 k' + cos 0 sin o k2 - sin 0 k3)]

P cos 2q - Q

+sRB [(- sin O k l + cos O k2) cos (wt) + (- sin 0 ki + cos 0 k '2)] (5.1)

It is noted that the modified system of equations 5.1 reduces to Eq. 2.21

when k' =k2=k3=0.

The application of an additional external forcing ( constant ) to control

chaotic systems evolving under the effect of external forcing (periodic) has
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been reported in the literature ( Lakshnianan and Murali 1996). In this method

the constant force is applied continuously. Our control strategy involves the

application of the constant force for a period of finite length, T after a period

of length, (n - 1)T (where T=27r/w is the fundamental period of the periodic

forcing). Then, we lift, the control for a period of finite length, (7z - 1)T and

thereafter we apply the constant force of the same magnitude for a period of

length, T and again we lift the control for a period of finite length. (n - 1)T.

This process is repeated. Under this process, the system is allowed to evolve

according to the system of Eq. 2.21 upto the (n-1)th forcing period and evolve

according to the system of Eqs. 5.1 at the nth forcing period. This process is

repeated every nth period. While solving the Eqs. 5.1, this idea can be imple-

mented by setting ki = ka = k3 = 0 if j 0 mod(n) and ki = k2 = k3 0 0 if

j = 0 mod ( n) where j represents iteration number and T = 2ir/w is the time

interval between two successive iterations . We note that the above equations

for 0 and ^ decouple in the absence of ki, ki and k2, k2. Hence the presence

of an external force field with either ki or k2 is necessary to obtain chaotic

solutions in this system . In our calculations we kept ki = k3 = kl = k3 = 0.

In almost all cases the system is stabilized to a periodic orbit with period n if

the control is applied throughout the nth period . In some cases the system is

stabilized to a periodic orbit of period equal to an integral multiple of n. On

the other hand if the control is applied continuously, we loose the flexibility of

controlling the system to an orbit of desired period.

5.3 Results on separation technique with con-

trol

We have analyzed the properties of the system without control in chapter 3. We

tentatively identified chaotic regimes of the parameter k2 keeping ki = k3 = 0.

As a first step in analyzing the properties of the equations derived in this work,
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we set kl = k3 = 0. in equations 2.21 and varied k2 for particles of different

aspect ratio within the range of re ranging from 0.2 to 2.0 in steps of 0.2 and

kept .) equal to J = 27r(re + r-1). AVe ran the program for 2500 points of

the Poincare section (stroboscopic plot) and deleted the first 2250 points to

remove the transients. We started the trajectory with the initial conditions

0 = o = 45°. For each trajectory we evaluated 100 points in each cycle which

resulted in 25000 points of the trajectory after the transients are removed. We

selected k2 = 12.0 and computed the solution of the equations for different re

ranging within 0.2 to 2.0 in steps of 0.2. For k2 = 12.0 the system given by

Eq. 2.21 behaved chaotically for all the re considered except for re equal to 1.8

and 2.0. The Lyapunov exponents of the attractors were evaluated and found

to be positive. The attractor and time series of a typical trajectory are shown

in Fig. 5.2 and Fig. 5.3 for the case of re=1.2.

In chapter 3, it was reported that the results of the computations are very

sensitive to the aspect ratio of the particle in some parameter regimes. In the

case of constant external fields in the same parametric regimes we obtained

regular behaviour. For re > 1.0, we obtained nearly the same fixed point

for all initial conditions in the case of a constant force field. This indicates

that in the sample application considered in this work, a periodic force field is

necessary to effect particle separation for particles with re > 1.0 as explained

in section 3.3. Tables. 3.1, 5.1 and 5.2 give a sample of the results obtained

for zero force, a constant force of amplitude k2 = 12.0 and a periodic force

of amplitude k2 = 12.0 respectively. In this case independent separation of

particles is possible only for particles of aspect ratio re equal to 1.2. The

existence of chaotic dynamics in this system allows control of its dynamics to a

desired orbit and thus suggests the possibility of better separation of particles

for almost all particles of aspect ratio ranging within 0.2 to 2.0. This is difficult

to obtain in the case of regular behaviour or chaotic behaviour without control.
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-90.0 -64 . 3 -38.6 -12.9 12.8 38.9 64.3 90.0
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Table 5.1 : Distribution of evolution of initially uniformly distributed

particles of different aspect ratios for the case k2 = 12.0, w = 0, 5 < 11 <
49 and 100 < 12 < 1000, where ll is the total number of particles in the
grid on the average and 12 is the total number of occurrences of the grid.
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Table 5 .2: Distribution of evolution of initially uniformly distributed

particles of different aspect ratios for the case k2 = 12.0, w = J =

27r(re + re 1), 5 < 11 _< 49 and 100 < 12 < 1000, where 11 is the total

number of particles in the grid on the average and 12 is the total number

of occurrences of the grid.
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-1.0

Figure 5.2 : Trajectory (phase space) plot of ul x u2 x u3 for k2 = 12,

initial conditions 0 = = 45°, w = J = 27r(re + re 1), re = 1.2.

We stabilized the chaotic dynamics obtained at k2=12.0 to a periodic be-

haviour of period equal to a multiple of the fundamental period, 27r/w to demon-

strate the applicability of the method proposed. The time series of u2 of the

Poincare section (stroboscopic plot) upto 4000 periods computed from Eq. 2.21

for re=1.6 is given in Fig. 5.4. It is demonstrated that the system can be con-

trolled to periodic behaviour of any desired period by applying the same con-

stant force. For example, the system could be controlled to period-2, period-3,

period-4 and period-5 orbits by applying the same constant force equal to k2=5

as can be seen from Figs. 5.5. This is obtained by setting ki = k2 = k3 = 0 if

j 0 mod(n) and k' = k3 = 0, k2 = 5.0 if j =_ 0 mod(n) in the evolution of

Eqs. 5.1 when the system is to be stabilized in a period-n orbit. The system
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Figure 5.3 : Phase space plot of ul vs. time for the attractor shown in

Fig. 5.2.

evolves according to the evolution Eq. 2.21 for j 0- 0 mod(n) and according

to the evolution Eqs. 5.1 for j = 0 mod(n). It is also possible to stabilize the

system to qualitatively different periodic orbits of the same period by suitably

changing the control parameter k2 as can be seen from Fig. 5.6. In this example

the control technique is applied after 1500 fundamental periods and the system

is followed upto 3000 periods with control. Once the control is applied the

system stabilizes rapidly to the appropriate periodic orbit as can be seen from

the sample figures in Fig. 5.5. The magnitude of the perturbation required to

stabilize the system was small compared to the magnitude of the periodic force

for all aspect ratios except re= 0.2, 0.4 and 0.6. The magnitude of the constant

force required for control depends on the aspect ratio of the particle and the

desired period, n for aspect ratios less than or equal to 0.6.

One important advantage of the control algorithm outlined in this work is

the possibility of switching over to different periodic solutions during a given

run. This implies that a system in chaotic dynamics can be stabilized to one

particular periodic orbit for a given time and to another periodic orbit of en-
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Figure 5.4 : 'I'rajectory Plot of U2 vs. time at every intersection of

the trajectory with the Poincare plane for k2 = 12, initial conditions

0 =45°,w=J=27r(re+re'), re=1.6.
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tirely different period after a given time as shown in Fig. 5.7. In this example

the control parameter k2 = 5.0 is applied between 1001 and 2000 periods to

stabilize the system to a period-2 orbit. Then control is lifted between 2001

and 3000 periods and again applied between 3001 and 4000 periods to stabilize

the system to a period-3 orbit. Control was removed again between 4001 and

5000 periods. Thus the system oscillates in a period-2 orbit between 1001- 2000

periods and then oscillates in a period-3 orbit between 3001- 4000 periods as

can be seen from Fig. 5.7. This figure also reveals the fact that once the control

is lifted, the system returns to a chaotic state. Another advantage which is

important from the point of view of the sample application proposed in this

work is the possibility of changing the periodic behaviour to another orbit of

the same period by changing the magnitude of the applied constant force. This

allows us to bring a particle having a definite aspect ratio to a desired orbit

by changing control parameters. It is also noted that all initially uniformly

distributed particles of a given aspect ratio within the range 0.8 < re < 2.0 can

be concentrated in a given grid by applying a periodic force with control as can
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0 1000 2000 3000

Time (2a/a))

Figure 5.5: Stroboscopic plot with control for k2 = 12, k2 = 5.0, initial

conditions 0 = = 45°, w = J = 27r(re + re 1), re = 1.6 showing (1). a

period-2 solution with n = 2 (2). a period-3 solution with n = 3 (3). a

period-4 solution with n = 4 (4). a period-5 solution with n = 5
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Figure 5.6 : Stroboscopic plot with different controls showing two differ-

ent period-2 orbits obtained for k2 = 12, initial conditions 0 = = 45°,

w = J = 27r(re+re'), re = 1.2 with control (1) k2 = 4,n = 2 (2)

k'2=5,n=2

Figure 5 .7: Stroboscopic plot showing period-2 and period-3 orbits

successively obtained with control applied at every second and third

periods respectively for k2 = 12, initial conditions 0 = = 45°,

w=J=27r(re+r;'),r,=1.6,k'2=5.0.
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be seen from Tables. 5.3, 5.4 and 5.5.

The observations made in this work suggest the possibility of separating

particles more efficiently based on control of chaotic dynamics. We applied a

control force (constant force) of magnitude 1 < k2 < 5. For this range of k2,

the chaotic dynamics of particles of all aspect ratio except re =0.2, 0.4 and 0.6

could be controlled to a desired orbit. This range of control force seems to be

sufficient for efficient separation of particles by shape since particles of these

aspect ratios alone can be brought to a desired position. To develop quantitative

results based on this observation, we divided the range of possible orientations

namely [-90° , 90°] in both 0 and 0 variables into 7 equal intervals resulting

in 49 equal sized grids. We then computed the evolution of initially uniformly

distributed particles of different aspect ratio within the range of re equal to 0.2

to 2 in steps of 0.2. In the section 3.3, we have already studied the evolution

of the initially uniformly distributed particles in the same manner within the

above range of particle axis ratios under the effect of constant, periodic and

zero force fields. We observed that periodic forces are better than constant

forces for separating particles especially of aspect ratio re > 1.

We followed the evolution of the ensemble of particles for 3000 iterations

of the stroboscopic plot and deleted the first 1000 values to remove transients

in the case of constant and zero forces and in the case of periodic forces with

control and without control. In all cases we calculated the number of particles

in each grid on every second iteration of the Poincare section of the evolution

equations resulting in a total of 1000 values. WVe noted the grids in which the

total number of particles was greater than or equal to 5 and also noted the

number of particles in each grid only if the particle occurred in that grid in

more than 100 iterations in all cases. We denote these values as re7 11, 12 where

re, 11, 12 denote the aspect ratio, total number of occurrences of the grid and

total number of particles in the grid on the average respectively and prepared

tables for these values. A particle of a given aspect ratio visiting a given grid
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0

Table 5.3: Distribution of evolution of initially uniformly distributed

particles of different aspect ratios for the case k2 = 12, w = J = 27r(re +

re 1), 5 < l1 < 49 and 100 < 12 < 1000 with control k2 = 2, where 11 is

the total number of particles in the grid on the average and 12 is the total

number of occurrences of the grid.
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Table 5.4: Distribution of evolution of initially uniformly distributed

particles of different aspect ratios for the case k2 = 12, w = J = 27r(re +

re 1), 5 < 11 < 49 and 100 < 12 < 1000 with control k2 = 3, where 11 is

the total number of particles in the grid on the average and 12 is the total

number of occurrences of the grid.
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Table 5.5: Distribution of evolution of initially uniformly distributed
particles of different aspect ratios for the case k2 = 12, w = J = 27r(re +

re 1), 5 < 11 < 49 and 100 < 12 < 1000 with control k'2 = 5, where 11 is

the total number of particles in the grid on the average and 12 is the total
number of occurrences of the grid.



Chapter 5. The theory of dynamics with control 71

and the absence of particles of other aspect ratios visiting the same grid is

more important than the number of visitations of a given grid and the number

of particles visiting a grid from the point of view of particle separation. Since

our earlier computations indicated the greatest sensitivity of the results to the

aspect ratio near k2 = 10, we selected k2 equal to 12.0 for comparing the effects

of periodic forces with and without control and as a magnitude of the constant

force. Earlier we demonstrated (in section 3.3) the possibility of the potential

application of the separation technique without control , where the magnitudes

of the external periodic force were taken as k2 = 9.5, 10.0 and 10.5 keeping

k1=k3=0.0.

We noted the evolution of the ensemble of particles at every 2nd iteration.

We analyzed in detail the cases of periodic force with and without control and

compared the results with the constant force and zero forces . The fact that a

chaotic behaviour can be controlled to oscillate in a selected period resulted in

more efficient separation enabling all initially and uniformly distributed parti-

cles to be directed to a desired grid by a suitably engineered control technique.

For example , all the 49 initially uniformly distributed particles of aspect ratio

re = 1.2 could be brought to the grids (1,4) or (7,4) by applying k2 = 4. Under

the same circumstances it was possible to bring all the 49 particles of aspect

ratio re = 1.2 to the grids ( 1,3) or ( 7,1) by applying a control of constant force

k2 = 5. A sample of the results we obtained for zero force, a constant force and

a periodic force both of magnitude k2 = 12.0 and for a periodic force of mag-

nitude k2 = 12.0 with control forces k2=2, 3 and 5 are given in Tables 3 . 1, 5.1,

5.2, 5.3, 5.4 and 5.5. The tables presented in this work indicate that controlling

chaotic dynamics is preferable to chaotic behaviour and regular behaviour for

efficient separation of particles.

A detailed analysis of all the tables indicates that particles of aspect ratio

0.2 alone can be separated from a mixture containing particles of different

aspect ratios ranging within 0.2 to 2.0 by applying a control force of magnitude
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k2=1, 2, 3, 4 or 5 applied at every second period along with k2 = 12, since

particles of aspect ratio 0.2 alone occur in some grids as can be seen from the

sample tables. In the case of periodic forces without control and constant and

zero forces particles of aspect ratio 0.2 alone also occur along the boundary of

the tables. We have suggested in the section 3.3 that particles of this aspect

ratio alone could be separated by applying a constant force. However in the

case of a periodic force with control, the occurrence of this particle alone are

concentrated among a fewer number of grids and visit a given grid a larger

number of times. In the case of zero forces the particles of this aspect ratio

alone are concentrated among a fewer number of grids along with particles of

higher aspect ratio. Thus, for the separation of the particles of this aspect

ratio alone a periodic force of magnitude k2 = 12.0 with control is preferable

to any other possibility. Similar analysis of the tables shows that it is desirable

to apply a periodic force with control for separating particles of aspect ratio

0.4. As can be seen from the sample tables particles of aspect ratio 0.6 alone

and 0.8 alone also can separated individually by applying a periodic force with

control. In the case of particles of aspect ratio 0.8, they can be brought to one

of the extreme grids. Thus, a periodic force with control seems to be preferable

to any other case considered for effective separation of particles in the case of

aspect ratios re < 1.

In an earlier analysis made in section 3.3, we have demonstrated that pe-

riodic forces are preferable to constant forces and zero forces for separating

particles of aspect ratio re > 1. In the analysis we observed that the occurrence

of particles of aspect ratio re > 1 are spread among a large number of grids.

However for particles of aspect ratio greater than or equal to 1.6 individual sep-

aration was not possible in the analysis. Further study of the tables prepared

in this work indicate that a periodic force with control is once again preferable

in such cases. In the case of particles of aspect ratio re > 1.0 all the initially

uniformly distributed particles of the same aspect ratio could be brought to
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one grid except for re = 1.8. Hence particles of aspect ratio within the range

of re ranging from 1 . 2 to 2.0 except for re=1 . S can be easily separated as can

be seen from the sample tables prepared. For particles of aspect ratio equal to

1.8 individual separation may not be possible in the cases considered in this

work since particles of this aspect ratio appear in combination with particles

of lower aspect ratio equal to 0.2 in some cases considered with control. Hence

if particles of aspect ratio 0.2 have been separated out as explained earlier,

particles of aspect ratio equal to 1.8 can be separated from the mixture. One

advantage of periodic forces with control is that all particles of aspect ratio 1.8

can be brought to one grid in combination with the particles of aspect ratio 0.2

as shown in Table 5.5.

Note that the dynamics of periodically forced spheroids of aspect ratios

re = 1.8 and 2.0 is non-chaotic when k2 = 12.0. In this case we lose the

flexibility of forcing the particles to oscillate in a desired orbit even though all

the particles of these aspect ratios could be brought to a single grid. Hence

it may be possible to separate out the particles of aspect ratios re = 1.8 and

2.0 alone by selecting some other values of k2 for which the system behaves

chaotically . In such cases more efficient separation of individual particles of

these aspect ratios may also be possible by a suitable control strategy. This

also shows that a chaotic behaviour of the dynamics with or without control is

a must for the separation of particles individually.

In conclusion , it has been generally noted that control of chaotic behaviour

gives better separation than chaotic and regular behaviour. One of the main

features of the method suggested in this work is that all particles of the same as-

pect ratio can be concentrated in a previously desired grid. A detailed analysis

of the problem can suggest suitable designs for separation of particles by aspect

ratio to get a well characterized suspension of particles . As pointed out in the

section 3 . 3, a possible design for this separation of particles from a mixture of

particles of different aspect ratios based on the differences in the orientation of
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the particle may consist of a base plate having grooves along different orienta-

tions so that when the particles are oriented in such directions, they settle in

a particular groove and can be separated out at every integral multiple of the

fundamental period.

Thus, even in the rather simple application considered in this work, control

of chaos leads to greater efficiency. This suggests that the possibility of chaos

control should be important in many of the applications mentioned in the in-

troduction. The novel control of chaos technique suggested in this section has

been demonstrated to be effective even in the relatively complex problem con-

sidered here. An additional feature of the control of chaos technique suggested

is that the control is effected very rapidly and the behaviour of the concerned

system can be switched from one desired period to another desired period very

rapidly. One of the interesting results noted is the possibility to stabilize peri-

odic orbits of period appreciably greater than by the Ott et al. method (Ott

et al. 1990). This suggests that this control of chaos technique may be applied

to other chaotic systems very effectively.

One paper resulting from this work is in press in the journal Sadhana,

published by Indian Academy of Sciences.

We compared the new technique in three dynamical systems and found some

advantages over two other techniques. A detailed comparative analysis of the

new control of chaos algorithm on some physically realizable model systems will

be presented in the next chapter.


