
Chapter 4

A New Class I Intermittency

4.1 Introduction

After the discovery of chaos there arose lots of questions regarding the routes to

the development of chaotic behaviour. What is the scenario behind the transi-

tion from regular behaviour to the chaotic behaviour as the control parameter

is varied ? Are there any universal patterns or sequences for this transition ?

Different routes to chaos have been reported in the chaos literature. The period

doubling route to chaos, quasi periodic route to chaos, intermittency route to

chaos, crisis induced intermittency route to chaos etc. are some of the widely

accepted scenarios. These routes to chaos are the ways in which the laminar

flow loses stability and becomes chaotic. Manneville and Pomeau (1979) intro-

duced the intermittency route to chaos in the Lorenz equations. The so-called

intermittency occurs when nearly regular behaviour (laminar flow) is intermit-

tently interrupted by chaotic outbreaks (bursts) at irregular intervals. As the

control parameter is increased (or decreased), the strength of the chaotic burst

also increases and finally the system ends up in fully chaotic behaviour. One

of the routes to chaos is the class I intermittency route to chaos.
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4.2 Class I intermittency

The scenarios describing the creation or destruction of a chaotic attractor as a

parameter is varied are also important in the field of dynamical systems. It is

interesting to see what happens in a dynamical system as the control parameter

is changed . If the trajectories in phase space of a dynamical system before

and after a specified value of the control parameter are qualitatively different,

then the qualitative difference is called a bifurcation. The transition from a

stable periodic orbit to an unstable periodic orbit is a qualitative change. If

branches of stable and unstable periodic orbits coincide at a particular value of

the control parameter , then such a bifurcation is called cyclic-fold bifurcation.

Assume that a dynamical system is under the influence of cyclic-fold bifurcation

at a particular value (say A ) of the control parameter in such a way that the

attractor is a limit cycle for all values of the control parameter less than the

particular value, A. At the same time it is impossible to determine the system

behaviour for values greater than .A by local bifurcation analysis.

The behaviour after bifurcation can be analyzed by numerical computations.

One possibility is that the attractor before bifurcation may be switched onto

a new attractor in which the old attractor will be a proper subset of the new

attractor . The analysis of the time series obtained by computer simulation

shows that an orbit in the attractor after the bifurcation point stays back near

the destroyed limit cycle for a long time and is interrupted by chaotic bursts.

The orbit near the destroyed limit cycle is called the laminar phase and the

chaotic burst between the laminar phases is called the turbulent phase. As the

control parameter is increased (or decreased in some other cases ) the average

time spent by the chaotic bursts in the attractor tends to infinity the attractor

become fully chaotic . This type of transition from periodic behaviour to chaotic

behaviour via a cyclic-fold bifurcation is called the intermittency route to chaos

of class I. The existence of the mechanism that reinjects the trajectory lying
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in the chaotic bursts to the vicinity of the limit cycle is necessary for the

intermittency route to chaos . If not , the orbit will never revisit the vicinity

of the limit cycle . A detailed treatment of different types of intermittency

routes to chaos is available in the literature ( Pomeau and Manneville 1980;

Hilborn 1994; Nayfeh and Balachander 1995). We observed a new type of class

I intermittency in the dynamics of periodically forced spheroids in simple shear

flow which is discussed in the following section.

4.3 Results on the new class I intermittency

In this section we report a physically realizable system in which the possibil-

ity of an interesting and novel type of Class I intermittency , namely, a non

hysteretic form of Class I intermittency with nearly regular behaviour inter-

rupted by chaotic outbreaks ( bursts ) with nearly regular reinjection period is

demonstrated . The bursting process was irregular in almost all previous com-

putational and experimental studies of Class I intermittency. Price and Mullin

(1991 ) have observed experimentally a similar type of phenomenon in which

a hysteretic form of intermittency with extreme regularity of the bursting is

observed . The system described in this section appears to be one of the very

few ODE systems describing a physically realizable system showing a non hys-

teretic form of Class I intermittency with nearly regular behaviour interrupted

by chaotic outbreaks ( bursts) with nearly regular reinjection period. We also

present appropriate return maps to explain the behaviour observed in this work.

The system also shows certain interesting features such as new scaling behaviour

away from the onset of intermittency and the number of the bursts during a

particular realization varying smoothly with the control parameter. We discuss

and compare the model of Class I intermittency with the new type of intermit-

tency. The comparison with the theoretical predictions of Class I intermittency

shows scaling typical of Class I intermittency. The average length of the burst

also scales with the control parameter with zero slope.
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The phenomenon of Class I intermittency with nearly constant reinjection

period. we observed in this work was obtained in the parametric regime 10.6 <

k2 < 12.44. We report the results for 0.01 < 0 < 40° and for all values of

0 in steps of 20° which results in 15 initial conditions for a given parameter

value. The evolution of the particle upto 2150 cycles was computed and the

results are presented for r,. = 1.6, w = J = 2-r(rP + re 1), and k1 = k3 = 0,. For

the trajectory we evaluated 100 points in each cycle which resulted in 215000

points and deleted 200000 points (2000 cycles) as transients. It was found to be

sufficient to concentrate on the remaining 15000 points of the trajectory to study

the new behaviour, because when the number of iterations was doubled the only

change in the observed behaviour was a doubling in the number of bursts with

no other change in the dynamics. We expect the greatest complexity of the

solutions of the above equations for this particular choice of parameters, since

k2 is responsible for the greatest opposition to the hydrodynamic torque due

to the imposed shear flow field. For k2 = 0, Jeffery's results are reproduced

and all solutions of the equations starting from different initial conditions tend

towards a fixed point in the stroboscopic plot. Upon changing k2 we observed

a number of chaotic regimes of the parameter k2 as well as a number of regular

regimes in between the chaotic regimes. The phenomena we wish to report in

this work lies in the parameter regime 10.6 < k2 < 12.44. We also confine

ourselves to the value of 0.01 < 0 < 40° and 0° < 0 < 90° in steps of 20°. This

choice of initial conditions and range of k2 results in interesting behaviour with

clear evidence for the new behaviour, namely Class I intermittency with nearly

constant reinjection period. For all values of k2, 0 and 0 within the above range,

the system shows similar behaviour.

The analysis of the time series and the attractor shows the existence of a

tangent bifurcation which leads to the novel behaviour of Class I intermittency

with nearly constant reinjection period. The maximum Lyapunov exponents

of both the time series of the bursts (denoted by X) and the laminar phase
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(denoted by Y) were positive and entirely different. Fig. 4.1 shows a superposi-

tion of the trajectories corresponding to the laminar phase and the bursts and

Fig. 4.2 shows the corresponding time series. During the bursts, the trajectory

moves away from the vicinity of the laminar region as is evident from Fig. 4.1.

The maximum Lyapunov exponent for the bursts was nearly constant for all 0,

0 and k2 considered and was equal to 0.21. indicating that the bursts show the

same type of chaotic behaviour everywhere in the system. At the same time the

maximum Lyapunov exponent for the laminar phase decreases with increasing

k2 and finally ends up in a periodic behaviour at k2 = 12.46. The system is

more sensitive to initial conditions near the chaotic bursts (Type X) and less

sensitive to initial conditions near the laminar phase (Type Y) as can be seen

from the time series of trajectories for slightly different initial conditions given

in Fig. 4.3.

The existence of the intermittency behaviour in the system was further con-

firmed by solving the evolution equations 2.18 and 2.21 in single and double

precision. The trajectories obtained from equation 2.21 in single and double

precision and from equation 2.18 in single precision for the same set of param-

eters and initial conditions are given in Fig. 4.4. There will be small changes in

the evolutions obtained from the numerical computations in single and double

precision due to round off error. Hence if the orbit is in a chaotic attractor, the

time series obtained here will diverge exponentially as is evident from Fig. 4.4.

However all the time series obtained show the same intermittency behaviour. As

k2 is increased near the onset of tangent bifurcation the bursts remain chaotic

with nearly the same Lyapunov exponent equal to 0.21. The Lyapunov ex-

ponents of the laminar phase were small compared to that of the bursts and

decreased slowly and became nearly zero as k2 is increased near the onset of

tangent bifurcation as can be seen from Table. 4.1. Table 4.1 shows that the

maximum Global Lyapunov exponent (GE) on the average lies between the

maximum Local Lyapunov exponent (LE) of the laminar phase and the chaotic
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Figure 4.1 : Typical phase space trajectory of the attractor showing the

laminar phase as well as the chaotic burst for k2 = 12.2, initial conditions

0=Q^=20°,w=J=27r(re+re'),re=1.6.
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Figure 4.2 : The time series of u1 of the trajectory shown in Fig. 4.1
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Figure 4.3 : Time series of different trajectories for k2 = 11.2, slightly

different initial conditions 0 = 20.00, 20.1°, 20.2°, 20.3°, = 20°,

w = J = 27r(re + re-1), re = 1.6.
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Time(21r/w)

Figure 4.4: Time series of trajectories obtained for from the equations

2.21 in single and double precision (denoted by a and b respectively) and

from the equations 2.18 in single precision (denoted by c) for the same set

of parameters and initial conditions. 0 = = 20°, w = J = 27r(re+re-1),

re=1.6,k2=11.2.

out breaks. Note that the maximum GE on the average is decreasing more

slowly than the decrease of maximum LE of laminar phase near the onset of

intermittency and both tend to zero as k2 is increased. The maximum LE of

the chaotic bursts remain constant as expected. This also demonstrates the

existence of the new type of class I intermittency and chaos.

It is well known that for the usual Class I intermittency, the average time

taken to traverse the channel varies as (k2 - k2)-°.5 where k2 is the critical

parameter for the tangent bifurcation. In order to clarify the nature of the

intermittency transition to chaos, we computed the scaling of the average length

of the laminar phase with the excess of the critical value of the parameter

over the control parameter very near to the tangent bifurcation at k2 = 12.44

(in steps of 0.02) and found the exponent to be -0.60 as shown in Fig. 4.5.

The scaling behaviour near the onset of bifurcation shows that the observed

transition is a typical Class I intermittency. This was further confirmed by the
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Local Lvapunov Exponent

k2 Laminar Phase Chaotic Bursts Global Lyapunov Exponent

10.6 0.20 0.21 0.23

11.0 0.13 0.19 0.17

11.4 0.19 0.16 0.18
11.8 0.19 0.19 0.19

12.0 0.13 0.20 0.18
12.2 0.10 0.18 0.18
12.4 0.11 0.24 0.15

12.44 0.04 0.20 0.11
12.46 0.00 0.00 0.00

Table 4.1: The maximum values of the Local and Global Lyapunov
exponent obtained for different values of k2, k1 = k3 = 0, w = J =

27r(re + re 1 ), re = 1.6, 0 20°
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superposition of the return map of 0 in the dynamics and the appropriate map,

On-1 = qn +O" 2 + E. Fig. 4 . 6 shows that the two maps coincide near the tangent

bifurcation, where the map R2 obtained from 0n+1 = 0„ + 0"2 + E is presented

for c equal to zero.

For detailed study we confined our results to 0 = 0 = 20° and 10.6 < k2 <

12.44. We analyzed the return maps of 0 by varying the control parameter

for comparatively large steps of k2, namely 0.2. In the return maps the points

corresponding to the onset of the laminar phase fell on the curve between the

points marked as A and B and remainder of the return maps correspond to the

intermittent bursts as given in the Fig. 4.7 . Fig. 4.7 shows the return maps of 0

of the Poincare Sections (stroboscopic plot) of 5000 iterations of the system for

one set of initial conditions and value of k2. Some points of a typical return map

are plotted by joining all the points to establish the fact that the reinjection

period is nearly constant and the plot is given in Fig. 4.8. The portion of the

return map shown in Fig. 4.8 corresponding to the region between A and B

corresponds to the laminar phase . An examination of Fig. 4.8 shows that once

the system leaves the laminar phase, it is reinjected into the neighbourhood of
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Figure 4.5 : Plot of logarithm of average length of laminar phase as
a function of logarithm of excess of control parameter showing scaling

typical of Class I Intermittency.

the tangent bifurcation in approximately two or three periods. The reinjection

time remains nearly unaffected by changes in control parameter whereas, as

expected, the average length of the laminar phase increases as the system moves

away from the tangent bifurcation.

The portion of the return maps shown in Fig. 4.7, which correspond to

regions away from the laminar phase, namely the smooth curve below the line

and the two intersecting straight lines, namely C1, C2 and C3 and is

explored during the bursts lies less often on these curves once the average length

of the laminar phase increases. As a result, fewer points of the stroboscopic

return map lie on these curves as k2 increases. The points of intersection D

and E with the line 0,,+1 = 0,, were confirmed to be non-attracting by starting

the computation with initial conditions near the points of intersection of the

curve D and E with the line 0,t+i = 0,• To further establish the observation
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Figure 4.6: Superposition of the observed return map (R1) obtained

from Eq.2.21 at the point of tangent bifurcation and the classic map (R2)

exhibiting Class I Intermittency, where the return map, R1 is presented

for k2 = 12.44, initial conditions 0 = = 20°, w = J = 27r(re + re 1),

re=1.6

of nearly regular reinjection process and the process is unaffected by variation

in the control parameter, the return maps of 0 for different values of k2 were

analyzed along with the line 0,+1 = 0,,,. It can be seen in Fig. 4.9 that the

reinjection process is unchanged by the variation in the control parameter.

Another interesting feature of this system is that the average length of the

laminar phase varies smoothly with the excess of the critical parameter over the

control parameter even when the system is relatively far away from the onset of

intermittency. This was confirmed numerically by checking that the logarithm

of the average life time of the laminar phase scaled linearly with the logarithm

of 12.6 - k2 with a slope of -1.15 as shown in the Fig. 4.10. Interesting scaling

behaviour is observed near the critical value of the control parameter as shown

in Fig. 4.11 where the length of laminar phase scales linearly with 12.4 - k2.
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Figure 4.7: The return map 0 for 5000 points of Poincare section (stro-

boscopic plot) of the system for k2 = 11.0, initial conditions 0 = = 20°,

w=J=2ir(re+re1),re=1.6.

The number of the bursts as well as the number of occurrences of the laminar

phase decreases as k2 is increased. Further, the average length of the bursts

is nearly constant and the average length of the laminar phase increases as k2

increases. It is also found that length of the burst scales with control parameter

near k2 = 12.4 with zero slope. The number of bursts as well as the number of

occurrences of the laminar phase decreases smoothly as k2 increases. As a result,

scaling behaviours of the average length of the laminar phase with k2 - 10.4

are obtained. Class I intermittency behaviour with nearly constant reinjection

period continued upto a value of k2 equal to 12.44. Beyond k2 equal to 12.44

this phenomenon disappeared and the system response becomes periodic.

The feature of the system studied which we feel is interesting to the nonlin-

ear dynamics community is the existence of Class I intermittency with nearly

constant reinjection period. This implies that the length of the burst between
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Figure 4.8: The return map 0 for 100 connected points of Poincare

section (stroboscopic plot) of the system for k2 = 12.2, initial conditions

8 = = 20°, w = J = 2ir(re +re 1), re = 1.6 showing that the reinjection

period is nearly constant.

two laminar phases is nearly constant. An analysis of the return maps for 0

shown in Figs. 4.7 and 4.8 indicates that once the system leaves the neigh-

bourhood of the tangency, it comes back to the neighbourhood of the tangency

in nearly the same number of iterations. At k2=12.44 the attractor is nearly

regular. The system was purely periodic with period 6 at k2=12.46.

Numerical evidence for Class I intermittency with nearly constant reinjec-

tion period has been presented near the onset of tangent bifurcation. New

scaling behaviour which governs how the average life time of the laminar phase

scales with control parameter away from the onset of intermittency is presented.

The return maps of the stroboscopic plot for different values of k2 given in

Fig. 4.9 provide an explanation for this behaviour. The present system is one

of the very few physically realizable systems which shows this phenomenon of
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Figure 4.9: Superposition of return maps of 0 for different values for

k2 =10.6, 11.0, 11.4, 11.8, 12.2, 12.44, initial conditions 0 = 0 = 20°,

w = J = 27r(re+re 1), re = 1.6. Curve C1 is for k2 =10.6, Curve C6 is for

k2 =12.44 with the other curves representing values of k2 in ascending

order.

Class I intermittency with nearly constant reinjection period. Since this prob-

lem is technologically important as is evident from the literature cited in this

work, the existence of the new behaviour in this system and the existence of

the interesting transient behaviour may have important practical consequences,

when operating near the regime considered in this work where this phenomenon

may not be recognized as leading to chaos. An analysis of the original model

equations to explain to some extent the behaviour presented in this work could

be carried out. Price and Mullin (1991) and Aubry et al. (1988) have re-

ported similar behaviour with other model equations. They have performed

some preliminary analysis of their model equations in an attempt to explain

the behaviour observed. A similar analysis of our model equations would be

considerably more involved since our equations are non-autonomous and would
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Figure 4.10 : Plot of logarithm of average length of laminar phase as
a function of logarithm of excess of control parameter showing scaling
away from the tangent bifurcation.

Figure 4 .11: Plot of average length of laminar phase as a function of
excess of control parameter showing linear scaling away from the tangent
bifurcation.
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not necessarily throw more light on the results than the analysis based on the

return maps presented here.

One paper resulting from this work has been published in an international

journal Phys. Lett. A (1997), The Netherlands.


