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Preface

The Development of Mathematics Practical Laboratory Manual as per the ITEP Syllabus
is designed to bridge the gap between theoretical mathematics and its practical applica-
tions through computational tools for easy handling the manual is divided into two parts
(Part I and Part II ). With rapid advancements in computers and mathematical software,
technology has become an integral part of mathematical education. While traditional meth-
ods relied heavily on manual calculations, the present era demands that students develop
computational and analytical skills to engage effectively with mathematical concepts.
Visualization plays a crucial role in mathematics learning. Modern mathematical software
allows students to perform complex calculations quickly and provides graphical representa-
tions that enhance their understanding of abstract concepts. By investing time in learning
the basic syntax of these tools, students can significantly improve their efficiency in problem-
solving and analysis. This manual serves as a supplementary text for Practical Mathematics
in the Integrated Teacher Education Programme (ITEP), offering a structured learning ex-
perience that enables students to analyze and classify mathematical concepts independently.
The manual presents a sequence of examples and exercises that reinforce understanding and
enhance problem-solving skills.

The primary objective of this manual is to acquaint students with various mathematical
software tools, develop an understanding of the practical applications of mathematics, and
enable them to integrate mathematics with other scientific disciplines. It aims to enhance
analytical and problem-solving skills while preparing future educators to incorporate com-
putational tools in teaching and research. Each chapter of this manual follows a structured
approach, including conceptual explanations, recommended software applications, step-by-
step solutions, and exercises to reinforce learning. The systematic organization of content
ensures that students not only gain theoretical knowledge but also develop hands-on expe-
rience in applying computational tools to solve mathematical problems.

As computational mathematics continues to play a crucial role in education and research,
this manual serves as an essential resource for students, bridging the gap between theoretical
learning and real-world applications. The increasing relevance of artificial intelligence,

machine learning, and data science has further highlighted the importance of computational
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skills in problem-solving. This manual prepares students for the future by providing them
with the expertise to navigate mathematical challenges using modern technological tools.

Designed to be a valuable academic resource, this manual supports students through pro-
gressive learning, hands-on practice, and analytical problem-solving. By the end of this
manual, students will have acquired a solid foundation in computational mathematics,
proficiency in mathematical software, and the ability to apply mathematics to practical
situations. This first part of the module introduces fundamental concepts, while the subse-
quent parts explore advanced problem-solving techniques and visualization tools. Through
continuous engagement and exploration, students will develop the ability to analyze, in-
terpret, and solve mathematical problems with confidence and efficiency. It is hoped that
this manual will inspire learners to explore mathematics beyond traditional boundaries and

embrace technology as a powerful tool for mathematical discovery.

Place: RIE, Bhopal Program Coordinators
Date: 31.01.2025
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Chapter 1

Operation Research

Aim

To plot

Practical No. 1

a graph of linear programming problem using MATLAB.

Problem

Plot the feasible region of the following LPP

Max Z = 3x1 + 225

Subject to: 1+ 19 <4
x|+ 2.1'2 S 6

1,72 >0

Algorithm

Step 1:

Step 2:

Step 3:
Step 4:

Step 5:

Initialize the value of x1 and x2 using the “linspace” command i.e.
x1=linspace(0, 6, 5); x2=linspace(0, 6, 5);

Plot both the constraints using the “plot” command

plot (z1,4 — x1, “g”, “DisplayName”, “x1 + 22 <= 47");

plot(z1, (6_—;1), “b”, “DisplayName”, “x1 + 2 x 22 <= 6");

Set the limit of axes through the command xlim and ylim i.e.
xlim([0, 6]); ylim([0, 6]);

Shading the feasible region with the help of “fill” command

fill([0, 4,2, 0], [0,0,2, 3], “¢g”, “FaceAlpha”,1, “DisplayName”, “Feasible Region”);
Plot the vertices

plot([0,4,2,0],[0,0,2,3], “ro”, “DisplayName”, “Vertices” );

1



Operation Research Practical No.

1

Step 6: Labeling the x1 and x2 axes
xlabel(“x1”); ylabel(“z2”);

Program

x1 = linspace(0, 6, 5); x2 = linspace(0, 6, 5);

plot(xl, 4 - x1, ‘g’, ‘DisplayName’, ‘xl + x2 <= 47);

hold on;

plot(xl, (6 - x1)/2, ‘b’, ‘DisplayName’, ‘xl + 2x%x2 <= 6’);
x1im([0, 6]);ylim([0, 6]);

fili([o, 4, 2, 01, [0, 0, 2, 3], ‘g’, ‘FaceAlpha’, 1,
‘DisplayName’, ‘Feasible Region’);

plot([O, 4, 2, 0], [0, O, 2, 3], ‘ro’, ‘DisplayName’, ‘Vertices’);
xlabel(‘x1’);ylabel(‘x2’);

legend(‘show’);

title(‘Graphical representation of feasible region to LP Problem’);
grid on;

hold off;

Output

The graphical representation of the feasible region to given LPP is:




Practical No. 2 Operation Research

Exercise Problem

Plot the feasible region of the following LPP
Max Z = 6x1 + 4x,

Subject to: 221 + 319 < 120
2ZL’1 + T S 60
1,22 20

Practical No. 2

Aim

To solve a linear programming problem using MATLAB.

Problem

Solve the following LPP
Max Z = 3LE1 + 2%2

Subject to: T+ <4
T+ 2$2 S 6

1,29 20

Algorithm
Step 1: Enter the coefficients of objective function and constraints
= [_3? _2};
A=11,1;1,2];
b= [4;6];
b =10,0];

Step 2: To solve the LPP using linprog command
[z, Z] = linprog(f, A, b, ], [], 1b);

Step 3: Display the results using fprintf command
fprintf(“Unique optimal solution is:”);
fprintf(“zl = %.2f, 22 = %.2f\n”, x(1), x(2));
fprintf(“Maximum Z = %.2f\n”, -Z);



Operation Research Practical No. 3

Program
f=[-3, -2];
A=11, 151, 2];
b = [4; 6];

1b = [0, 0];

[x, Z] = linprog(f, A, b, [1, [, 1b);
fprintf (‘Unique optimal solution is:’);
fprintf(‘xl = %.2f, x2 = %.2f\n’, x(1), x(2));
fprintf (‘Maximum Z = %.2f\n’, -Z);

Output

The output of the above program is

Optimal solution found.

Unique optimal solution is: x1 = 4.00, x2 = 0.00
Maximum Z = 12.00

Exercise Problem

Solve the following LPP
Max Z = bz + 3,

Subject to: T+ 29 <9

25(,’1 +3LE2 S 7
X1, T2 2 0

Practical No. 3

Aim
To plot a graph of linear programming problem with unbounded solution using MATLAB.

4



Practical No. 3 Operation Research

Problem

Solve the following LPP graphically
Max Z = 3x1 + 25

Subject to: Ty — Ty > 2
Ty + Xg Z 4

1,72 >0

Algorithm

Step 1: Initialize
x1 = linspace(0, 10, 100);
Step 2: Plot the lines of the constraints
plot (z1,21 — 2, ‘DisplayName’, ‘xl — 22 >=2');
hold on;
plot (z1,4 — z1, ‘0, ‘DisplayName’, ‘x1 + 22 >= 4);
Step 3: Set the limit of axes through the command xlim and ylim i.e.
xlim ([0, 10]);ylim([0, 10]);
Step 4: Shading the feasible region with the help of “fill” command
fill([2, 10, 10, 4], [0, 8,10, 0], ‘¢, ‘FaceAlpha’, 1, “DisplayName”, ‘Feasible Region’);
Step 5: Plot the vertices
plot(|[0,4,2,0],[0,0,2,3], “ro”, “DisplayName”, “Vertices” );
Step 6: Labeling the x; and x5 axes
xlabel(“z,"); ylabel(“zs”);

Program

x1 = linspace(0, 10, 100);

x2_1 =x1 - 2; % x1 - x2 >= 2
x2_2 =4 - x1; % x1 + x2 >= 4
% Plot the constraints

figure;

plot(x1l, x2_1, ’r’, ’LineWidth’, 1.5, ’DisplayName’, ’x1 - x2 >= 2
plot(xl, x2_2, ’b’, ’LineWidth’, 1.5, ’DisplayName’, ’x1 + x2 >= 4’
x1im ([0, 10]1);

ylim([0, 101);

x_fill = [4, 3, 10, 10]; % x-coordinates of the boundary

y_fill [0, 1, 8, 0]; % y-coordinates of the boundary

% Shade the feasible region

fill(x_fill, y_fill, ’g’, ’FaceAlpha’, 0.3, ’EdgeColor’, ’none’, ’DisplayName’, °’
% Add labels and legend

xlabel(’x1’, ’FontSize’, 12, ’FontWeight’, ’bold’);

ylabel(’x2’, ’FontSize’, 12, ’FontWeight’, ’bold’);

5



Operation Research Practical No. 4

title(’Graphical Solution - Unbounded Solution’, ’FontSize’, 14, ’FontWeight’, ’bold’);
legend(’Location’, ’best’);

grid on;

hold off;

Output

The graphical representation of the unbounded solution.

o Graphical Solution - Unbounded Solution

x1-x2>=2
x1+x2>=4 4
Feasible Region

x2

Exercise Problem

Plot the following LPP
Min Z = 40z, + 80z,

Subject to: T2x1 + 1229 > 216
6x1 + 24x9 > 72
4y + 20x9 > 200

x1,T2 > 0

Practical No. 4



Practical No. 4 Operation Research

Aim

To plot a graph of linear programming problem with no feasible solution using MATLAB.

Problem

Plot the following LPP graphically
Max Z = 3x1 + 25

Subject to: 1+ 139 < 4
r1+ 29 > 6

x1,22 >0

Algorithm

Step 1: Initialize
x1 = linspace(0, 7, 100);
Step 2: Plot the lines of the constraints
plot (1,4 — 1, ‘', ‘DisplayName’, ‘z1 + 22 <= 4');
hold on;
plot (21,6 — z1,V, ‘DisplayName’, ‘z1 + 22 >= 6);
Step 3: Set the limit of axes through the command xlim and ylim i.e.
xlim([0, 7]);ylim([0, 7]);
Step 6: Labeling the x; and zo axes
xlabel(“z,”); ylabel(“zy”);

Program

x1 = linspace(0, 7, 100);

plot(xl, 4 - x1, ‘r’, ‘DisplayName’, ‘xl1 + x2 <= 4’); hold on;
plot(xl, 6 - x1, ‘b’, ‘DisplayName’, ‘xl + x2 >= 67);
x1im ([0, 71);

ylim([0, 71);

xlabel (‘x1’);

ylabel(‘x27);

legend(‘show’);

title(‘Graphical Solution - No Feasible Solution’);
grid on;

hold off;

Output

The graph shows the no feasible solution.



Operation Research Practical No. 5

Graphical Solution - No Feasible Solution

x1 +x2 <=4
X1 +x2>=6

Exercise Problem

Plot the following LPP
Min Z = 5z + 8x9

Subject to: 41 + 629 < 24
41 + 8xy < 40

21,72 >0

Practical No. 5

Aim

To plot a graph of linear programming problem with alternative solutions using MATLAB.

Problem

Plot the following LPP graphically
Max Z = 3.1’1 + 21’2

Subject to: T+ 229 < 8
T+ T2 S 6

L1, T2 2 0




Practical No. 5 Operation Research

Algorithm

Step 1: Initialize the x;
x1 = linspace(0, 8, 100);
Step 2:Plot the lines of the constraints
plot(z1,(8 — x1)/2,‘r’, ‘DisplayName’, ‘zl + 222 <= &');
hold on;
plot(x1,6 — x1, D, ‘DisplayName’, ‘zl + 22 <= 6');
Step 3: Set the limit of axes through the command xlim and ylim i.e.
xlim ([0, 10]);ylim([0, 10]);
Step 4: Shading the feasible region with the help of “fill” command
fill(]0, 6,4, 0], [4,0,2,4], ‘¢’, ‘FaceAlpha’, 0.3, ‘DisplayName’, ‘Feasible Region’;
Step 5: Labeling the x; and x5 axes
xlabel(“z,"); ylabel(“zq”);

Program

x1 = linspace(0, 8, 100);

% Plot the constraint lines
plot(x1l, (8 - x1) / 2, ’r’, ’DisplayName’, ’x1 + 2x2 <= 8’); hold on;
plot(x1l, 6 - x1, ’b’, ’DisplayName’, ’x1 + x2 <= 67);

% Set axis limits for better visualization
x1im([0, 8]);
ylim ([0, 6]);

% Define the feasible region vertices (including (0, 0))
x_feasible = [0, 0, 4, 6, 0];
y_feasible = [0, 4, 2, 0, 0];

% Fill the feasible region completely
fill(x_feasible, y_feasible, ’g’, ’FaceAlpha’, 0.5, ’DisplayName’, ’Feasible Regi

% Label axes and add legend

xlabel(’x17);

ylabel(’x27);

legend(’show’);

title(’Graphical Solution - Feasible Region Including (0, 0)’);
grid on;

hold off;



Operation Research

Practical No. 6

Output

-
o
N
\\\
Exercise Problem
Plot the following LPP
Min Z = 2xq + 4x,
Subject to: r1+ 225 <5
Ty + X2 S 4
1,12 20

Practical No. 6

Aim

To solve the linear programming problem through simplex method using MATLAB.

Problem

Solve the following LPP using simplex method.
Max Z = 5!13'1 + 41‘2

Subject to: r1+ 225 <5
2131 + X2 < 8

L1, T2 2 0

10




Practical No. 6 Operation Research

Algorithm

Step 1: Input the objective function coefficients by using the following commands
disp(‘Enter the objective function coefficients:”);
¢(1) = input(‘Enter Coefficient 1: ”);
¢(2) = input(‘Enter Coefficient 2: ”);
Step 2: In MATLAB
c=—c
Step 3: Input the coefficients for the constraints
A(1, input(‘Enter first coefficient of constraint 1: 7);
A(1, input(‘Enter second coefficient of constraint 1: ’);
A(2, input(‘Enter first coefficient of constraint 2: ’);
A(2,2) = input(‘Enter second coefficient of constraint 2: ’);
Step 4: Input the right-hand side values for the constraints and non-negativity constraints
b(1) = input(‘Enter right-hand side for constraint 1: ’);
b(2) = input(‘Enter right-hand side for constraint 2: ’);
b = [0; 0];
Step 5: Maximize the problem using linprog command and also display the results
options = optimoptions(‘linprog’, ‘Algorithm’, ‘dual-simplex’);

1)
2)
1)
2)

[X7 fval] = hnprOg(Ca A> b, H? H? Ib, []7 OptiOHS);
disp(‘Optimal values for x:’);
disp(x);
disp(‘Optimal value of the objective function Z:’);
disp(-fval);

Program

disp(’Enter the objective function coefficients:’);

c(1) = input(‘Enter Coefficient 1: ’);
c(2) = input(‘Enter Coefficient 2: ’);
c = -c;

disp(‘Enter the coefficients for the constraints (A matrix):’);

% Enter after converting constraints with "less than and equal to" sign
A(1,1) = input(‘Enter first coefficient of constraint 1: ’);

A(1,2) = input(‘Enter second coefficient of constraint 1: ’);

A(2,1) = input(‘Enter first coefficient of constraint 2: ’);

A(2,2) = input(‘Enter second coefficient of constraint 2: ’);
disp(‘Enter the right-hand side values for the constraints (b vector):’);
b(1) = input(‘Enter right-hand side for constraint 1: ’);

b(2) = input(‘Enter right-hand side for constraint 2: ’);

1b = [0; 0];

options = optimoptions(‘linprog’, ‘Algorithm’, ‘dual-simplex’);

[x, fvall = linprog(c, A, b, [1, [, 1b, [], options);

disp(‘Optimal values for x:’);

11



Operation Research Practical No.

disp(x);
disp(‘Optimal value of the objective function Z:’);
disp(-fval);

Output

Enter the objective function coefficients:

Enter Coefficient 1: 5

Enter Coefficient 2: 4

Enter the coefficients for the constraints (A matrix):
Enter first coefficient of constraint 1: 1

Enter second coefficient of constraint 1: 2

Enter first coefficient of constraint 2: 2

Enter second coefficient of constraint 2: 1

Enter the right-hand side values for the constraints (b vector):
Enter right-hand side for constraint 1: 5

Enter right-hand side for constraint 2: 8

Optimal solution found.

Optimal values for x:

3.6667, 0.6667

Optimal value of the objective function Z:

21

Exercise Problem

Plot the following LPP
Max Z = 3x1 — X9

Subject to: T — X9 <3
2[[)1 — X9 S 0
2.T1 — T2 Z 12

1,22 >0

Practical No. 7

Aim
To solve the linear programming problem using simplex method through MATLAB.

12



Practical No. 7 Operation Research

Problem

Solve the following LPP using simplex method.
Max Z = 25.171 + 30552

Subject to: 1+ 229 <9
201 w9 <7
3271 + 2132 S 5%

1,72 >0

Algorithm

Step 1: Define a function file in MATLAB with help of ¢, A, and b
function [|[=Simplex(c, A, b);
Step 2: Initialize ¢, A, and b
[m,n| = size(A);
A = [A eye(m)];
¢ = e, zeros(1,m)];
Step 3: Check the condition tableau(end,1:end —1) <0
Step 4: Using for loop in side the while condition to calculate the values of the table
Step 5: Display the results.

Program

% Instructions to run this program:

% stepl: Enter the inputs in coomand window by using semicolomn as a separator

% for example: c=[25, 30]; A=[1,2; 2,1; 3,2]; b=[9;7;5];
% step2: Type simplex(c, A, b) and then press enter.
function []=Simplex(c, A, b)
[m, n] = size(A);
A=T[A, eye(m)];
c = [c, zeros(1, m)];
tableau = [A, b; -c, 0];
while any(tableau(end, 1:end-1) < 0)
[7, pivotCol] = min(tableau(end, 1:end-1));
ratios = tableau(l:end-1, end) ./ tableau(l:end-1, pivotCol);
ratios(ratios < 0) = Inf;
[, pivotRow] = min(ratios);
pivotElement = tableau(pivotRow, pivotCol);
tableau(pivotRow, :) = tableau(pivotRow, :) / pivotElement;
for i = [1:pivotRow-1, pivotRow+1:m+1]
tableau(i, :) = tableau(i, :) - tableau(i, pivotCol)
* tableau(pivotRow, :);

end

13



Operation Research Practical No. 8

end

optSolution = zeros(1l, n);

for i = 1:n
if any(tableau(l:end-1, i) == 1) &&
all(tableau(l:end-1, i) == 0 | tableau(l:end-1, i) == 1)

optSolution(i) = tableau(find(tableau(l:end-1, i) == 1), end);

end

end

optValue = -tableau(end, end);

disp(’Optimal Solution:’);

disp(optSolution);

disp([’Optimal Value: ’, num2str(optValue)]);

end

Output

>> ¢ = [25, 30];
>> A 1, 2; 2, 1; 3, 2]1;
> b = [9; 7; 5];
>> Simplex(c, A, b)
Optimal Solution:

0 2.5000
Optimal Value: -75

Exercise Problem

Plot the following LPP
Max Z = 100x; 4+ 80x2

Subject to: 621 + 49 < 7200
21 + 4o < 4000

x1,T2 > 0

Practical No. 8

Aim
To solve the linear programming problem through Two-phase method using MATLAB code.

14



Practical No. 8 Operation Research

Problem

Solve the following LPP using simplex method.
Max Z = bxy + 4,

Subject to: T+ 229 <5
21’1 + X9 S 8

1,22 20

Algorithm

Step 1: Define the coefficients of the objective function in Phase 1.

Step 2: Enter the system of constraints with artificial variables.

Step 3: Run the phase 1 using the linprog command and find the values of op.

Step 4: Evaluate the x_phasel and fval_phasel values by using c,hasel, A, b, and op.

Step 5: Display the results of Phase 1, x_phasel, fval_phasel.

Step 6: Check the condition

Step 7: Minimize the original objective function by using the following command
[z_phase2, fval_phase2] = linprog(c_phase2, A, b, ], [],1b,[], op)

Step 8: Display the results of optimal solution for the original problem

Program

c_phasel = [0; 0; 0; 1; 1];
A=1T[1, 2, 2, 0, 0;
3, -1, 3, 1, 01;
b = [6; 8];
1b = zeros(5, 1);
op = optimoptions(‘linprog’, ‘Algorithm’, ‘dual-simplex’, ‘Display’, ‘iter’);
[x_phasel, fval_phasel] = linprog(c_phasel, A, b, [1, [1, 1b, [1, op);
disp(‘Phase 1 solution (artificial variables):’);
disp(x_phasel);
disp(‘Phase 1 objective function value (should be 0 if feasible):’);
disp(fval_phasel);
if fval_phasel > 0O
disp(‘No feasible solution exists.’);
else
disp(‘Feasible solution found. Proceeding to Phase 2...°);
c_phase2 = [-3; -2; 0; 0; 0];
[x_phase2, fval_phase2] = linprog(c_phase2, A, b, [1, [I, 1b, [1, op)
% Display Phase 2 results (optimal solution for the original problem)
disp(‘Optimal values for x1, x2, sl, s2, al:’);
disp(x_phase2);
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Practical No. 9

disp(‘Optimal value of the objective function Z:’);

disp(-fval_phase?2);
end

Output

Phase 1 solution (artificial variables):

O O O O O

Phase 1 objective function value (should be 0 if feasible):

0

Feasible solution found. Proceeding to Phase 2...

Iter Time Fval Primal Infeas
0 0.001 0.000000e+00 0.000000e+00
2 0.011 -1.228571e+01 0.000000e+00

Optimal solution found.

Optimal values for x1, x2, s1, s2, al:
3.1429
1.4286
0
0
0

Optimal value of the objective function Z:
12.2857

Exercise Problem

Plot the following LPP
Min Z = 21 — 229 — 323

Dual Infeas
1.428720e+00
0.000000e+00

Subject to: — 21+ 29+ 323 =2
201 + 319 + 43 =1

L1,22,T3 Z 0

16
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Practical No. 9

Aim

To solve the linear programming problem with no feasible solution using MATLAB.

Problem

Solve the following LPP using simplex method.
Max Z = 3x1 + 25

Subject to: T+ a9 <1
— T1 — T2 S -3

T1,T2 >0

Algorithm

Step 1: Enter the value of ¢, A, and b.
c=[-3 -2 A=[1L-1—-1J;b=[1;-3];
Step 2: Evaluate the value of x, fval, and output using the following command
options = optimoptions('linprog’,” Algorithm’,' dual—simplex’) Display', iter’);
linprog (¢, A, b,[],[], (b, [], options);
Step 3: Check the condition using if else statement
Step 4: Display the results.

Program
c = [-3; -2];
A=1[11;-1-1];
b = [1; -3];
1b = [0; 0];

[z, fuc

options = optimoptions(‘linprog’, ‘Algorithm’, ‘dual-simplex’, ‘Display’, ‘iter’);

[x, fval, exitflag, output] = linprog(c, A, b, [1, [1, 1b, [], options);
if exitflag == -2
disp(‘The problem has no feasible solution.’);
elseif exitflag ==
disp([‘Optimal solution found: ’, num2str(fval)]);
else
disp(‘The problem could not be solved for some other reason.’);
end

17
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10

Output

Linprog stopped because no point satisfies the constraints.
The problem has no feasible solution.

Exercise Problem

Plot the following LPP
Max Z = x1 + 2

Subject to: T — Xy < —1
— X1+ X9 < 0

L1, T2 Z 0

Practical No. 10

Aim

To solve the linear programming problem with unbounded solution using MATLAB.

Problem

Check the uniqueness of the LPP using MATLAB.
Max Z = 2!13'1 + 11‘2

Subject to: — 2+ 1y < =2
1 — 2]}2 < 2

Ty, T2 > 0

Algorithm

Step 1: Enter the values of ¢, A, and b

Step 2: Solve the problem using the optimoptions command

Step 3: Calculate the value of x, fval, exitflag, and output using linprog command
Step 4: Display the results using the disp command

18
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Program
c = [-2; -1];
A=1[-11;1-2];
b = [-2; 2];
1b = [0; 0];

options = optimoptions(‘linprog’, ‘Algorithm’, ‘dual-simplex’, ‘Display’, ‘iter’);
[x, fval, exitflag, output] = linprog(c, A, b, [J, [1, 1b, [], options);
if exitflag == -3
disp(‘The problem is unbounded.’);
elseif exitflag ==
disp([‘Optimal solution found: ’, num2str(fval)]);
else
disp(‘The problem could not be solved for some other reason.’);
end

Output

Iter Time Fval Primal Infeas Dual Infeas
0 0.001 0.000000e+00 2.378414e+00 1.783811e+00
1 0.001 -4 .000000e+00 2.378414e+00 0.000000e+00
2 0.001 -4 .000000e+00 0.000000e+00 2.973018e+00

3 0.001  -4.000000e+00  0.000000e+00  2.973018e+00
The problem is unbounded.

Exercise Problem

Plot the following LPP
Max Z = 60x; + 20z,

Subject to: 2x1 + 4x9 > 120
8x1 + 6x9 > 240
x1,T2 > 0
7 X
Practical No. 11
Aim

Check the uniqueness of the LPP using MATLAB.

19
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Problem

Solve the following LPP.
Max Z = T+ To

Subject to: T1+ 10 <4
T S 3
T S 3

x1,22 >0

Algorithm

Step 1: Enter the objective function coeffiecients.

Step 2: Enter the constraints coefficients.

Step 3: Calculate the values of x, fval using the lingprog command.
Step 4: Check the condition using if else statement.

Step 5: Display the results using the disp command.

Program

c = [-1; -11;
A=1[11;10; 01];
b = [4; 3; 3];
1b = [0; 0];
options = optimoptions(‘linprog’, ‘Algorithm’, ‘dual-simplex’, ‘Display’, ‘iter’);
[x, fval, exitflag, output] = linprog(c, A, b, [], [], 1b, [], options);
if exitflag ==
disp([‘Optimal solution found: Z = ’, num2str(-fval)]);
disp([‘Optimal point: x1 = ’, num2str(x(1)), ’, x2 = 7, num2str(x(2))]);
disp(‘Note: There may be infinitely many solutions along the line segment of the feasib
elseif exitflag == -3
disp(‘The problem is unbounded.’);

elseif exitflag == -2
disp(‘The problem has no feasible solution.’);
else
disp(‘The problem could not be solved for some other reason.’);
end
Output
Iter Time Fval Primal Infeas Dual Infeas

0 0.001 0.000000e+00  0.000000e+00  1.414201e+00
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1 0.001  -3.999964e+00  1.000000e+00  0.000000e+00
2 0.001 -4.000000e+00  0.000000e+00  0.000000e+00

Optimal solution found.

Optimal solution found: Z = 4

Optimal point: x1 =3, x2 =1

Note: There may be infinitely many solutions along the line segment
of the feasible region.

Exercise Problem

Solve the following LPP.
Max Z = 5x1 + 9z»

Subject to: 3r1+dxy <7
2371 S 3
81’2 S 3

1, T2 > 0

Practical No. 12

Aim

Create the simplex table of simplex algorithm for LPP using MATLAB.

Problem

Find the simplex table for the following LPP.
Max Z = X1+ T2

Subject to: 1+ 19 <4
I S 3
T2 S 3

1,22 20

Algorithm

Step 1: Enter the ¢, A, and b.
Step 2: Create table using the following command.

21
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tableau = [A; ¢];
Step 3: Display the results using disp command.

Program

c=[-3-5000];

A=1[2310 12;
1101 5];

tableau = [A; c];
disp(‘Initial Simplex Tableau:’)
disp(tableau)

Output

>> Problem_12
Initial Simplex Tableau:

2 3 1 0 12
1 1 0 1 5
-3 -5 0 0 0

Exercise Problem

Find the simplex table for the following LPP.
Max Z = 2!13'1 + 3ZE2

Subject to: 3x1+ 519 < 8
7.771 S 4
4[[’2 S 3

1,22 >0

Practical No. 13

Aim
Check the uniqueness of an LPP using MATLAB.
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Problem

Solve the following LPP.
Max Z = 31’1 + 2512'2

Subject to: 4x1 4+ 529 <6
31‘1 —+ 233'2 S 12

Ty, T2 > 0

Algorithm

Step 1: Enter the coefficient of ¢, A, and b.

Step 2: Using the pre-defined optimoptions to solve the LPP.
Step 3: Evaluate the x, fval, and output using if else statement.
Step 4: Display results.

Program
c = [-3; -2];
A=1[4, 5 3, 2];
b= [6; 12];

op = optimoptions(‘linprog’, ‘Algorithm’, ‘dual-simplex’, ‘Display’, ‘iter’);
[x, fval, exitflag, output] = linprog(c, A, b, [1, [1, [0; 01, [I, op);
if exitflag ==

disp(‘Optimal solution found:’);

disp(x);

disp(‘Maximum Z:’);

disp(-fval);

elseif exitflag == -3
disp(‘The problem is unbounded.’);

elseif exitflag == -2
disp(‘No feasible solution exists.’);

else
disp(‘Multiple optimal solutions exist.’);

end

Output

Iter Time Fval Primal Infeas Dual Infeas
0 0.001 0.000000e+00  0.000000e+00 9.164285e-01
1 0.001 -1.200000e+01  7.400828e+00  0.000000e+00
2 0.002 -4.500000e+00  0.000000e+00  0.000000e+00

23
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Optimal solution found.

Optimal solution found:
1.5000
0

Maximum Z:
4.5000
Exercise Problem

Solve the following LPP.
Max Z = 4z + 5z,

Subject to: 311 + 8xy < 10
71’1 + 41’2 S 5

21,72 >0

Practical No. 14

Aim

To plot a graph of feasible region and solve an LPP with three constraints using MATLAB.

Problem
Solve the following LPP.
Max Z =z +vy
Subject to: r+y<4
y<3
z <2
z,y 20

Algorithm

Step 1: Initialize x and y.
Step 2: Define the constraints.
Step 3: Plots the line of the constraints.
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Step 4: Enter the corner points.
Step 5: Calculate the values of max_7Z using for loop statement.
Step 6: Print the results using fprintf command.

Program

x = linspace(0, 5, 100);
y = linspace(0, 5, 100);
vyl =4 - x; % From x + y <= 4, rearrange as y = 4 - x

y2 = 3 * ones(size(x)); % From y <= 3, create a horizontal line y = 3
x2 = 2 * ones(size(y)); % From x <= 2, create a vertical line x = 2
figure;

hold on;

plot(x, yl, ‘r’, ‘DisplayName’, ‘x + y <= 4’); % Constraint 1

plot(x, y2, ‘b’, ‘DisplayName’, ‘y <= 3’); % Constraint 2

plot(x2, y, ‘g’, ‘DisplayName’, ‘x <= 2’); % Constraint 3

% Set axis limits for better visualization

axis([0 5 0 5]);

% Redefine feasible region to exclude above (1, 3) and (2, 2)
fiii(fo, o, 1, 2, 2], [0, 3, 3, 2, 0], ‘y’, ‘FaceAlpha’, 0.5, ‘DisplayName’, ‘Fea
% Label axes and plot

xlabel(‘x’);

ylabel(‘y’);

legend show;

title(‘Graphical Solution of LPP with Three Constraints’);

% Calculate Z at each corner point (new region)

corner_points = [0 0; 0 3; 1 3; 2 2];

Z = 3 * corner_points(:,1) + 2 * corner_points(:,2);

% Display the results
fprintf (‘Corner Points and Z values:\n’);
for i = 1:size(corner_points, 1)
fprintf (‘Point (x, y) = (%.2f, %.2f), Z = %.2f\n’, corner_points(i,1), corner
end
% Find the optimal solution
[max_Z, max_index] = max(Z);
optimal_point = corner_points(max_index, :);
fprintf (‘\nOptimal Solution:\n’);
fprintf(‘x = %.2f, y = %.2f, Maximum Z = %.2f\n’, optimal_point(1l), optimal_point
hold off;
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Output

Corner Points and Z values:

Point (x, y) = (0.00, 0.00), Z = 0.00
Point (x, y) = (2.00, 2.00), Z = 10.00

(2.00, 3.00), Z = 12.00
(1.00, 3.00), Z = 9.00

Point (x, y)
Point (x, y)

Optimal Solution:
x = 2.00, y = 3.00, Maximum Z = 12.00

Graphical Solution of LPP with Three Constraints.

Exercise Problem

Solve the following LPP.
Max Z = 2z + 3y

Subject to: 3r+5y <9
y<5
r <8
z,y >0

Practical No. 15

Aim
To plot a graph of feasible region of an LPP with three variables using MATLAB.
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Problem

Solve the following LPP.
Max Z = x1 + 29 + 23

Subject to: T1+ 22+ 23 <6
T+ 2;62 + x3 < 8

L1,22,T3 Z 0

Algorithm

Step 1: Initialize the x and y value using meshgrid command.
Step 2: Enter the constraints of three variables.

Step 3: Plot the lines of the constraints.

Step 4: Display the graph.

Program

[x, y] = meshgrid(0:0.1:10, 0:0.1:10);
z1=6-x-1y;
z2 = 8 - x - 2xy;

z1(z1 < 0) = NaNlN;
z2(z2 < 0) = NaNl;
figure;
hold on;

surf(x, y, zl, ‘FaceAlpha’, 0.5, ‘EdgeColor’, ‘none’, ‘DisplayName’,

‘X +y+z<=6");

surf(x, y, z2, ‘FaceAlpha’, 0.5, ‘EdgeColor’, ‘none’, ‘DisplayName’,

‘X + 2y + z <= 87);
axis([0 10 0 10 0 101);
xlabel (’x’);
ylabel(’y’);
zlabel(’z’);

legend;

title(’Graphical Solution of LPP with Three Variables’);

hold off;
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16

Graphical Solution of LPP with Three Variables

I X +y+z<=86
or B <+ 2y +z<=8

10

8 10
Output
Exercise Problem
Solve the following LPP.
Max Z = 2%1 + 55(32 + 7563
Subject to: 3x1 + 213+ 23 <9

4:171 + 71’2 + 23 < 10

£L1,T2,T3 Z 0

Practical No. 16

Aim

To solve the LPP through Big-M method using MATLAB.

Problem

Solve the following LPP.
Max Z = 3x1 + 224

Subject to: 31 +4xy < 4
5371 + Zo Z 6

1,72 20
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Algorithm

Step 1: Initialize the Big-M value

M = 1000;
Step 2: Enter the coefficients of the objective function.
Step 3: Enter the coefficient matrix for the constraints.
Step 4: Evaluate the x, fval using the linprog i.e.

[z, fval] = linprog(c, A, b, [],[], (b, ||, options);
Step 5: Display the results using disp command

Program
= 1000;
c = [-3; -2; 0; 0; M];
A=1[3, 4, 5, 0, O;
5,1, 0, -1, 11;
b = [4; 6];

1b = zeros(b, 1);

options = optimoptions(‘linprog’, ‘Algorithm’, ‘dual-simplex’, ‘Display’, ‘iter’)
[x, fvall = linprog(c, A, b, [1, [l, 1b, [], options);

disp(‘Optimal values for x1, x2, sl, s2, al:’);

disp(x);

disp(‘Optimal value of the objective function Z:’);

disp(-fval);

Output

Iter Time Fval Primal Infeas Dual Infeas
0 0 0.000000e+00 0.000000e+00 9.999998e-01
1 0.001 -4 .000000e+00 0.000000e+00 0.000000e+00

Optimal solution found.

Optimal values for x1, x2, s1, s2, al:
1.3333
0
0
0.6667

Optimal value of the objective function Z:
4
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Exercise Problem

Solve the following LPP.
Max Z = 55(,’1 + 6562

Subject to: 4x1 + 8x9 <6
3r1+ 229> 7

1,22 >0

Practical No. 17

Aim

To solve the real-world problem through LPP using MATLAB.

Problem

Solve the following LPP.

A company produces three products (P1, P2, and P3), each requiring different amounts
of three resources (R1, R2, and R3). The resource constraints are as follows: R1 has a
maximum of 100 units, R2 has a maximum of 80 units, and R3 has a maximum of 60 units.
The profit per unit of P1, P2, and P3 is Rupees 40, 30, and 50, respectively. The company
wants to determine the optimal number of units of each product to produce in order to
maximize profit, while satisfying the resource constraints. Formulate and solve the linear
programming problem to find the optimal production quantities and maximum profit.

Max Z = 40x1 + 30z9 + 50x3

Subject to: 2x1 + x9 + 33 < 100
T+ 2I2 + 2.733 S 80
1+ X9 + X3 < 60

x1, 29,3 > 0

Algorithm

Step 1: Enter the ¢, A, and b.

Step 2: Solve the problem using optimoptions.

Step 3: Calculate the values of x, fval using the following

[z, fval, exit flag, output] = linprog(c, A, b, [], [], b, [], options);
Step 4: Display the results.
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Program

% Coefficients of the objective function
¢ = [-40; -30; -50; 0; 0; 0]; % Include slack variables with O coefficients

% Coefficient matrix for constraints (A matrix)

A=102,1, 3,1, 0, O; % Coefficients for the first constraint (with slack)
1, 2, 2, 0, 1, 0; % Coefficients for the second constraint (with slack)
1, 1, 1, 0, 0, 1]; % Coefficients for the third comstraint (with slack)

% Right-hand side of the constraints
b = [100; 80; 60];

% Lower bounds for decision variables and slack variables (all >= 0)
1b = zeros(6, 1); Y% 6 variables (3 decision + 3 slack)

% Use linprog to solve the problem
options = optimoptions(‘linprog’, ‘Algorithm’, ‘dual-simplex’, ‘Display’, ‘iter’)
[x, fval, exitflag, output] = linprog(c, [1, [], A, b, 1b, [], options);

% Display the results

if exitflag ==
disp(‘Optimal solution found:’)
disp([‘Units of Product P1 (x1)
disp([‘Units of Product P2 (x2)

>, num2str(x(1))]1)
>, num2str(x(2))]1)

disp([‘Units of Product P3 (x3) = ’, num2str(x(3))])
disp([‘Slack variable for Constraint 1 (sl1) = ’, num2str(x(4))])
disp([‘Slack variable for Constraint 2 (s2) = ’, num2str(x(5))])
disp([‘Slack variable for Constraint 3 (s3) = ’, num2str(x(6))])
disp([‘Maximum Profit = ’, num2str(-fval)]) 9 Negate to get max profit
else
disp(‘The problem does not have an optimal solution.’)
end
Output
Iter Time Fval Primal Infeas Dual Infeas
0 0.015 0.000000e+00 0.000000e+00 2.500000e+01
2 0.015 -2.200000e+03 0.000000e+00 0.000000e+00

Optimal solution found.

Optimal solution found:
Units of Product P1 (x1)
Units of Product P2 (x2)

40
20
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Units of Product P3 (x3) =0

Slack variable for Constraint 1 (sl1) =0
Slack variable for Constraint 2 (s2) =0
Slack variable for Constraint 3 (s3) =0

Maximum Profit = 2200

Exercise Problem

A company produces three products (P1, P2, and P3), each requiring different amounts
of three resources (R1, R2, and R3). The resource constraints are as follows: R1 has a
maximum of 1000 units, R2 has a maximum of 800 units, and R3 has a maximum of 600
units. The profit per unit of P1, P2, and P3 is Rupees 400, 300, and 500, respectively.
The company wants to determine the optimal number of units of each product to produce
in order to maximize profit, while satisfying the resource constraints. Formulate and solve
the linear programming problem to find the optimal production quantities and maximum
profit.
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Practical No. 18

Aim

To solve a LPP with minimization objective function using MATLAB.

Problem

Solve the following LPP.
Min Z = 50x1 + 80z5

Subject to: —3x1 — 229 < —120
— T — 4.1'2 § —80
x1,r2 20

Algorithm

Step 1: Enter the ¢, A, and b.
Step 2: Calculate the values of x, fval using the following.
[z, fval, exit flag, output] = linprog(c, A, b, [], [], b, []);
Step 3: To find the values of minimum cost using the if else statement.
Step 4: Display the results.

Program

c = [60; 801;

A= [-3, -2;
-1, -4];

b = [-120; -80];

1b = [0; 0];

[x, fval, exitflag, output] = linprog(c, A, b, [I, [, 1b, [1);
if exitflag ==
disp(‘Optimal solution found:’);

disp([‘Units of x1 = ’, num2str(x(1))]);

disp([‘Units of x2 = ’, num2str(x(2))]);

disp([‘Minimum Cost = ’, num2str(fval)]);
else

disp(‘The problem does not have an optimal solution.’);
end
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19

Output

>>

Units of x1 = 32
Units of x2 = 12
Minimum Cost = 2560

Exercise Problem

Solve the following LPP.
Min Z = 70x; + 100z

Subject to: —bx1 — Tre < —130
— 3%1 — 4.772 S —-90
1,72 20

Practical No. 19

Aim

To plot the graph of a LPP with minimization objective function using MATLAB.

Problem

Solve the following LPP.
Min Z = 50x; + 80xy + 40z3

Subject to: 1+ x93+ 23 <30
21’1 + 2o + 3.1'3 < 60
x1 + 229 + 23 < 40

Ty, To, 23 > 0

Algorithm

Step 1: Enter the ¢, A, and b.
Step 2: Calculate the values of x, fval using the following
[z, fval, exit flag, output] = linprog(c, A, b, [, [],1b, []);
Step 3: To find the values of minimum cost using the if else statement.
Step 4: Display the results.
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Program

[x1, x2] = meshgrid(0:1:30, 0:1:30);
x3_1 = 30 - x1 - x2;

x3_2 = (60 - 2xx1 - x2) / 3;
x3_3 = 40 - x1 - 2%x2;
x3_1(x3_1 < 0) = NaN;
x3_2(x3_2 < 0) = NaN;
x3_3(x3_3 < 0) = NaNl;
figure;

hold on;

surf(xl, x2, x3_1, ‘FaceAlpha’, 0.5, ‘EdgeColor’, ‘mnone’, ‘DisplayName’,
‘x1 + x2 + x3 <= 307);

surf(xl, x2, x3_2, ‘FaceAlpha’, 0.5, ‘EdgeColor’, ‘none’, ‘DisplayName’,
‘2x1 + x2 + 3x3 <= 60’);

surf(xl, x2, x3_3, ‘FaceAlpha’, 0.5, ‘EdgeColor’, ‘none’, ‘DisplayName’,
‘x1 + 2x2 + x3 <= 40°);

axis([0 30 0 30 0 30]);

xlabel(’x1’);

ylabel(’x27);

zlabel(’x37);

legend;

title(‘Feasible Region for Minimization Problem’);

hold off;

Output

Exercise Problem

Solve the following LPP.
Min Z = 50x; + 80z + 403

Subject to: 1+ 29+ 23 <50
xr1 + 31‘2 + 21‘3 S 40

xy,T2,23 >0

Practical No. 20
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20

Feasible Region for Minimization Problem

30

I <1 + x2 + x3 <= 30
B 2x1 + x2 + 3x3 <= 60
P <1 + 2x2 + x3 <= 40

25

20

X2

15

10

Aim

To solve a LPP with minimization objective function using MATLAB.

Problem

Solve the following LPP.
Min Z = Ty + X9

Subject to: —x1+1xy < —1

1,72 >0

Algorithm

Step 1: Enter the ¢, A, and b.
Step 2: Calculate the values of x, fval using the following
[z, fval, exit flag, output] = linprog(c, A, b, [],[], b, []);
Step 3: To find the values of minimum cost using the if else statement.
Step 4: Display the results.

Program
c = [1; 1];
A= [-1, 1];
b = [-1];

1b = [0; 0];
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[x, fval, exitflag, output] = linprog(c, A, b, [1, [1, 1b, [1);
if exitflag ==
disp(‘Optimal solution found:’);

disp([‘x1l = ’, num2str(x(1))1);
disp([‘x2 = 7, num2str(x(2))]1);
disp([‘Minimum Cost = ’, num2str(fval)l);
elseif exitflag == -2
disp(‘The problem is unbounded.’);
else

disp(‘The problem does not have an optimal solution.’);
end

Output

>>

Optimal solution found:
x1 =1

x2 =0

Minimum Cost = 1

Exercise Problem

Solve the following LPP.
Min Z = 2xq + 3>

Subject to: T — 29 > 1

1,72 > 0
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Mathematical Statistics
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Chapter 3

Mathematical Modeling

Practical No. 1

Aim
To model the population growth of a species over time using exponential growth and analyze

the solution using MATLAB.

Problem

Given an initial population size, predict the population after a certain time period using
the exponential growth model.

Theory

The population growth can be modeled by the differential equation:

dP
dt

= rP, P(0) = P,
where

e P(t) is the population at time ¢

e 1 is the growth rate
The solution to this differential equation is

P(t) = P0€rt
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Algorithm

Step 1: Initialize initial population F, and the growth rate r,

Step 2: Define the time period over which the population is to be calculated,

Step 3: Use the exponential growth formula to calculate the population at each time step
P(t) = Poe”,

Step 4: Plot the population over time,

Step 5: Define and calculate r.
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Program

% Parameters

PO = 100; % Initial population
r = 0.05; % Growth rate

t =0:0.1:10; % Time vector

% Population at time t
P = PO * exp(r * t);

% Plotting the result

figure;

plot(t, P);

xlabel (‘Time’);

ylabel (‘Population’);
title(‘Exponential Population Growth’);
grid on;

Outcome
This program will generate a plot showing the exponential growth of the population over

time. The x-axis represents time, and the y-axis represents the population size. You should
see a curve that starts at the initial population Py and grows exponentially as time increases.

Exercise Problem

Consider an initial population size Py = 150. Using the exponential growth model, predict
the population after 15 years with three different growth rates: » = 0.03, » = 0.06, and
r = 0.09. Calculate the population size at ¢ = 15 years for each growth rate. Plot the
population growth over time for all three growth rates on the same graph. Interpret how

the population changes with different growth rates and discuss which growth rate has the
most significant impact on long-term population growth.

Practical No. 2

Aim
To model the distance traveled by an object moving at constant velocity.
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Exponential Population Growth

1?'} T T T T T T T T

160

180

Population
=
—

(Y

el

-
T

%
N,

120 /

f’ff
10 s -
,.IDD -""-f i i i i i i i i i
0 1 2 3 4 5 6 7 8 9 10
Time
Problem

Given a constant velocity, find the distance an object travels over time.

Theory

With constant velocity, the distance traveled is given by:
d=wv-t,

where

e ( is the distance traveled,
e v is the constant velocity,

e { is the time.

Algorithm

Step 1: Define the constant velocity v,
Step 2: Use the formula to calculate d over time,
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Step 3: Calculate and store values for each time step,
Step 4: Plot distance over time.

45



Mathematical Modeling Practical No. 3

Program

i Constant Velocity Model

60; % Constant velocity in km/h
10; % Total time in hours

v
T

% Time vector from O to T
time = linspace(0, T, 100);

% Calculate distance at each time point
distance = v * time;

% Plotting the distance traveled

figure;

plot(time, distance, ‘r-’, ‘LineWidth’, 2);
title(‘Constant Velocity Model’);
xlabel(‘Time (hours)’);

ylabel (‘Distance (km)’);

grid on

4

Outcome

The output of the program is as follows

Exercise Problem

An object is moving at a constant velocity. Calculate the distance it travels over 15 seconds
at three different constant velocities: v = 10 m/s, v = 20 m/s, and v = 30 m/s. Calculate
the distance traveled for each velocity over time ¢t = 0 to ¢ = 15 seconds. Plot the distance

over time for each velocity on the same graph. Interpret how changing velocity affects the
slope of the distance-time graph and the overall distance covered.

Practical No. 3

Aim

To model the decay of a quantity over time, such as radioactive decay or the decrease in
population with a constant decay rate.
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Constant Velocity Model
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Problem

Given an initial quantity and a constant decay rate, simulate the decay over time.

Theory

For exponential decay, the quantity decreases over time as
Q(t) = Qoe™™,
where
e ((t) is the quantity at time ¢
e () is the initial quantity

e k is the decay constant

Algorithm

Step 1: Define initial quantity )y and the decay constant k,
Step 2: Use the decay formula to calculate Q(t) over time,
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Step 3: Calculate and store the values for each time step,
Step 4: Plot the decay over time.
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Program

% Simple Decay Model

Q0 = 100; % Initial quantity
k=0.1; % Decay constant
T = 50; % Total time period

% Time vector from O to T
time = linspace(0, T, 100);

% Calculate quantity at each time point
Q = Q0 * exp(-k * time);

% Plotting the decay

figure;

plot(time, Q, ‘g-’, ‘LineWidth’, 2);
title(‘Simple Decay Model’);

xlabel (‘Time’);

ylabel (‘Quantity’);

grid on

Output

The output of the program is as follows
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Simple Decay Model
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Exercise Problem

Given an initial quantity Qo = 200, calculate the decay over time for three different decay
constants: k = 0.05, £k = 0.1, and £ = 0.2. Simulate the decay over a time period from ¢t = 0
to t = 20 and calculate the quantity ((t) for each decay constant at each time step. Plot
the decay curves on the same graph to compare how different values of k affect the decay
rate. Interpret the differences between the curves, noting how the value of k£ influences the
decay rate and the time taken for the quantity to decrease significantly.

Practical No. 4

Aim
To model the free fall of an object under gravity and analyze the motion using MATLAB

50




Practical No. 4 Mathematical Modeling

Problem

Given the initial height and initial velocity of an object, predict its position and velocity
over time as it falls under the influence of gravity.

Theory
The motion of a freely falling object can be described by the equations:

U(t) = + gta

1
y(t) = yo + vot + 591527
where
e y(t) is the position at time ¢

e v(t) is the velocity at time ¢

Yo is the initial height

vp is the initial velocity

g is the acceleration due to gravity (approximately 9.8m/s”)

Algorithm

Step 1: Define the initial height g, initial velocity vy, and the acceleration due to gravity
g,

Step 2: Define the period over which the motion is to be calculated,

Step 3: Use the equations of motion to calculate the position and velocity at each time
step,

Step 4: Plot the position and velocity over time.

Program

/» Parameters
yO = 100; % Initial height (meters)
vO = 0; % Initial velocity (m/s)
9.8; % Acceleration due to gravity (m/s”~2)
0:0.1:10; % Time vector (seconds)

ct 09
I

% Position and velocity at time t
v=v0+g*t;
y=y0 +v0 *xt + 0.5 % g *xt.72;
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% Plotting the results

figure;

subplot(2,1,1);

plot(t, y);

xlabel (‘Time (s)’);

ylabel(‘Height (m)’);

title(‘Free Fall - Position vs Time’);
grid on;

subplot(2,1,2);

plot(t, v);

xlabel(‘Time (8)’);

ylabel(‘Velocity (m/s)’);

title(‘Free Fall - Velocity vs Time’);
grid on
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Output

The output of the program is as follows
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Exercise Problem

An object is dropped from an initial height of yy = 200 meters under the influence of
gravity (g = 9.8 m/s). Calculate and plot the position and velocity over 10 seconds for the
initial velocities: v9 = 0 m/s; vo = 10 m/s; v9 = —10 m/s. Calculate the position y(t) and
velocity v(t) for each initial velocity over time. Plot the position and velocity for each case
on separate graphs to compare the motion. Analyze the effect of different initial velocities

on the time taken to reach the ground.

Practical No. 5

Aim

To model the population growth with a carrying capacity, where growth slows as the pop-

ulation approaches this limit.
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Problem

Given an initial population, growth rate, and carrying capacity, predict the population over
time.

Theory

The logistic growth model accounts for population limits by introducing a carrying capacity
K. The differential equation is given by

dP P .
%:rp(1—§) WlthP(O):POa

where
e P(t) is the population at time ¢,
e 7 is the growth rate,
e K is the carrying capacity.

The solution is of the form

where F, is the initial population.

Algorithm

Step 1: Define the initial population Fy, growth rate r, and carrying capacity K,
Step 2: Set up a time vector over which to evaluate the model,

Step 3: Calculate P(t) for each time point using the logistic formula,

Step 4: Plot P(t) against time to visualize logistic growth.
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Program

% Logistic Growth Model

PO = 50; % Initial population

r =0.1; % Growth rate (10%)

K = 500; % Carrying capacity

T = 50; % Total time period (years)

% Time vector from O to T

time = linspace(0, T, 100);

% Calculate population at each time point using logistic formula
P=K ./ (1 + ((K-P0O) / P0) * exp(-r * time));
% Plotting the logistic growth

figure;

plot(time, P, ‘g-’, ‘LineWidth’, 2);
title(‘Logistic Growth Model’);

xlabel (‘Time (years)’);

ylabel (‘Population’);

grid on;

Output

This plot will show an S-shaped (sigmoid) curve, where the population initially grows
quickly, then slows down as it approaches the carrying capacity K.

Exercise Problem

An environment has a population with an initial size of Py = 50 and a growth rate r = 0.08.
Predict the population over time for three different carrying capacities: K = 300, K = 500,
and K = 1000.

For each carrying capacity, calculate and plot the population over 50 years and observe
the differences in growth behavior.

Practical No. 6

Aim

To model linear and nonlinear growth and decay using first-order ordinary differential equa-
tions (ODEs) and analyze the solutions using MATLAB.
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Logistic Growth Model
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Problem

Given an initial quantity, we aim to model its growth or decay over time using both linear
and nonlinear equations. We will compare the results and visualize the solutions.

Theory

Linear Growth and Decay

The linear growth/decay model is described by the equation:

Yoro,  with QO = @

where
e ()(t) is the quantity at time ¢

e [ is the constant rate of growth (if £ > 0) or decay (if £ < 0)

The solution to this differential equation is

Q(t) = Qoekt7

where @) is the initial quantity.
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Nonlinear Growth and Decay

One common nonlinear model is the logistic growth model

dQ Q . _
== rQ (1 — E) 7 with  Q(0) = Qo,

where
e ((t) is the quantity at time ¢,
e 1 is the intrinsic growth rate,
e K is the carrying capacity.
The solution to this differential equation is

B KQoert
N K + Qo(e”t — 1)7

Q(t)

where @) is the initial quantity.

Algorithm

Step 1: Define the initial quantity )g and parameters k, r, and K,

Step 2: Define the time period over which the quantity is to be calculated,

Step 3: Use the respective equations to calculate the quantity at each time step for linear
and nonlinear models,

Step 4: Plot the quantities over time for comparison.

Program

% Parameters

Q0 = 10; % Initial quantity

k = -0.1; % Decay constant for linear model

r = 0.1; % Growth rate for nonlinear model

K = 100; % Carrying capacity for nonlinear model
t = 0:0.1:50; % Time vector

% Linear model (Exponential decay)
Q_linear = QO * exp(k * t);

% Nonlinear model (Logistic growth)
Q_nonlinear = K * Q0 * exp(r * t) ./ (K + Q0 * (exp(r * t) - 1));

% Plotting the results
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figure;

plot(t, Q_linear, ‘r’, ’DisplayName’, ‘Linear Decay’);

hold on

plot(t, Q_nonlinear, ‘b’, ‘DisplayName’, ‘Logistic Growth’);
xlabel(‘Time’);

ylabel (‘Quantity’);

title(‘Linear Decay vs Logistic Growth’);

legend;

grid on;

Output

MATLAB programs will generate a plot showing the linear decay and logistic growth of
the quantity over time. The x-axis represents time, and the y-axis represents the quantity.
The linear decay will show an exponential decrease, while the logistic growth will show an
S-shaped curve that levels off as it approaches the carrying capacity K.

Linear Decay vs Logistic Growth
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Exercise Problem

Suppose you are tracking two quantities:

Quantity A: Represents the decay of a chemical substance over time with an initial
amount of (o = 50 and a decay rate k = —0.03.

Quantity B: Represents the growth of a biological population in an environment
with limited resources, starting with an initial population @)y = 50, growth rate » = 0.07,
and carrying capacity K = 200.

For each quantity: calculate and plot the values over 80 units of time. Also, analyze

the different behaviors shown in the graph.

Practical No. 7

Aim

To model population growth with a carrying capacity, where growth slows as the population
approaches this limit.

Problem

Given an initial population, growth rate, and carrying capacity, predict the population over
time.

Theory

The logistic growth model accounts for population limits by introducing a carrying capacity
K. The differential equation is

% —rP (1 - %) . with P(0) = Py,
where

e P(t) is the population at time ¢,

e 1 is the growth rate,

e K is the carrying capacity.

The solution is of the form

where Py is the initial population.
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Algorithm

Step 1: Define the initial population Fy, growth rate r, and carrying capacity K,
Step 2: Set up a time vector over which to evaluate the model,

Step 3: Calculate P(t) for each time point using the logistic formula,

Step 4: Plot P(t) against time to visualize logistic growth.
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Program

% Parameters for the Logistic Growth Model with Harvesting
PO = 100; % Initial population

r =0.1; % Growth rate (10%)

K = 500; % Carrying capacity

h = 20; % Harvesting rate

T = 50; % Total time period (years)

% Define the differential equation
dPdt = @(t, P) r * P x (1 - P / K) - h;

% Define options to stop integration when population goes below zero
options = odeset(’Events’, @(t, P) eventFcn(P));

% Solve using ode45 with event handling
[time, P] = ode45(dPdt, [0 T], PO, options);

% Plotting the population growth with harvesting
figure;

plot(time, P, ‘m-’, ‘LineWidth’, 2);
title(‘Logistic Growth Model with Harvesting’);
xlabel (‘Time (years)’);

ylabel (‘Population’);

grid on;

% Event function to stop integration when population reaches zero
function [value, isterminal, direction] = eventFcn(P)

value = P; % Condition to check (population reaches zero)
isterminal = 1; % Stop the integration
direction = -1; % Detect when P is decreasing through zero

end

Output

The plot will show an S-shaped (sigmoid) curve, where the population initially grows
quickly, then slows down as it approaches the carrying capacity K.
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Logistic Growth Model with Harvesting
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Exercise Problem
Given a population with an initial size of Fy = 100, growth rate »r = 0.1, and carrying
capacity K = 500, explore how varying harvesting rates impact the population over time.

Find different values for the harvesting rate h; h = 10, h = 20, h = 30. For each harvesting
rate, plot the population over 50 years and analyze the behavior of the population.

Practical No. 8

Aim

To model the spread of an infectious disease using the SIR model and analyze the solution
using MATLAB.
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Problem

Write down a mathematical model for SIR model.

Theory
The SIR model describes the dynamics of infectious diseases as follows
as
— =451
i BST,
dl
— =pSI —~vI
7 =P V1,
dR
— =l
dt YL
with
S(O) == So, [(O) = [0, R(O) == Ro,
where

e S(t) is the number of susceptible individuals at time ¢,
e I(t) is the number of infectious individuals at time ¢,

e R(t) is the number of recovered individuals at time ¢,

B is the infection rate,

v is the recovery rate.

Algorithm

Step 1: Define the parameters 3, v and the initial numbers Sy, Iy, Ry,

Step 2: Define the time vector over which the system will be simulated,

Step 3: Use the SIR model equations to define the system,

Step 4: Use MATLAB’s ODE solver (ode45) to solve the system of equations,

Step 5: Plot the numbers of susceptible, infectious, and recovered individuals over time.

Program

% Parameters

beta = 0.3; % Infection rate

gamma = 0.1; % Recovery rate

initial_values = [0.99, 0.01, 0]; % Initial S, I, R values

T = 160;
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sir_model = @(t, Y) [-beta * Y(1) * Y(2); beta * Y(1) * Y(2) - gamma * Y(2);
gamma * Y(2)];

[time, SIR] = ode45(sir_model, [0 T], initial_values);

plot(time, SIR(:,1), ‘b’, time, SIR(:,2), ‘r’, time, SIR(:,3), ‘g’);
title(‘SIR Epidemic Model’);

xlabel (‘Time’);

ylabel(‘Population Fraction’);

legend(‘Susceptible’, ‘Infected’, ‘Recovered’);

grid on;

Output

Plot showing the progression of susceptible, infected, and recovered populations, with the
infection peaking and then declining.
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Exercise Problem

Modeling the spread of an infectious disease in a population using the SIR (Susceptible,
Infected, Recovered) model. Consider the following parameters: 5 = 0.4 (the rate at which
individuals are infected by others), v = 0.1 (the rate at which infected individuals recover)
with initial population conditions: Sy = 0.95, Iy = 0.05, Ry = 0.

Practical No. 9

Aim

To model the interaction between predator-prey populations using a system of ordinary
differential equations and analyze the stability of the system using MATLAB.

Problem

Write down a mathematical model for Lotka-Volterra predator-prey system and analyze
the system’s stability.

Theory

The Lotka-Volterra predator-prey system is described as the system of following differential

equations as follows
dx

a = o T Py
dy 5
_ = €x J—

with initial values
.Z'(O) = Xy, y(o) = Yo,

where
e x(t) is the prey population at time ¢,
e y(t) is the predator population at time t,

« is the growth rate of prey in the absence of predators,

B is the predation rate,

v is the natural death rate of predators,

e ) represents the activation rate of predators.
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9

Algorithm

Step 1: Define the parameters «, 3, v, 0 with initial values xg, yo,

Step 2: Define the time vector over which the system will be simulated,

Step 3: Use the Lotka-Volterra equations to define the system,

Step 4: Use MATLAB’s ODE solver (ode45) to solve the system of equations,
Step 5: Plot the population of prey and predators over time.

Program

% Parameters

alpha = 0.1; 7% Prey growth rate

beta = 0.02; % Predation rate

gamma = 0.1; ’ Predator death rate

delta = 0.01; % Predator reproduction rate

% Initial conditions
x0 = 40; % Initial prey population
yO = 9; % Initial predator population

% Time vector
tspan = [0 200];

% Lotka-Volterra equations
lotka_volterra = @(t, xy) [alpha * xy(1l) - beta * xy(1) * xy(2);
delta * xy(1) * xy(2) - gamma * xy(2)];

% Solve the system of equations
[t, xy] = ode45(lotka_volterra, tspan, [x0, y0]);

% Plotting the results

figure;

plot(t, xy(:,1), ‘r’, ‘DisplayName’, ‘Prey Population’);
hold on;

plot(t, xy(:,2), ‘b’, ‘DisplayName’, ‘Predator Population’);
xlabel(‘Time’) ;

ylabel (‘Population’);

title(‘Predator-Prey Dynamics’);

legend;

grid on;
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Output

MATLAB programs will generate a plot showing the populations of prey and predators over
time. The x-axis represents time, and the y-axis represents the population size. The plot
will show the oscillatory behavior typical of predator-prey dynamics, where the populations
of prey and predators rise and fall periodically.
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Exercise Problem

You are tasked with modeling the interaction between predator and prey populations over
time using the Lotka-Volterra equations. Given the initial populations of prey and preda-
tors, simulate their interaction and analyze the stability of the system for the parameters:

prey growth rate (a) = 0.1, predation rate coefficient (5) = 0.02, predator death rate ()
= 0.1, predator reproduction rate (0) = 0.01, with initial values xy = 50 and yo = 10.

Practical No. 10

Aim

To model the initial spread of an infection in a population where no one is immune.

Problem

Given a small initial infection rate and transmission rate, predict the number of infected
individuals over time.

Theory

The basic infection model is defined as follows

dl 1 .
E_B] (1_N)’ with 1(0) = I,

where
e [(t) is the number of infected individuals at time ¢,
e (3 is the transmission rate,

e N is the population.

Algorithm

Step 1: Define [y, 8, N,

Step 2: Set up a time vector,

Step 3: Use ode45 in MATLAB,
Step 4: Plot the spread of infection.
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Program

% Initial infected population
% Transmission rate
% Total population
% Time span

dIdt = @(t, I) beta * I x (1 - I / N);

[time, I] = ode45(dIdt, [0 T], I0);

plot(time, I, ‘m-’, ‘LineWidth’, 2);
title(‘Disease Spread Model (S-I)’);
xlabel (‘Time (days)’);
ylabel(‘Infected Individuals’);

grid on;

Output

An initial rapid increase in infection, slowing as it approaches the total population N.

Exercise Problem

You are tasked with modeling the initial spread of an infection in a population using the
given infection model. The infection starts with a small number of initially infected indi-
viduals and spreads over time with parameters: initial number of infected individuals (1)
= 2, transmission rate () = 0.3, total population (N) = 200, simulation time (7)) = 20
days. Using MATLAB, simulate the spread of the infection over time with the given pa-
rameters. Plot the number of infected individuals versus time. What do you observe about
the infection spread in the early stages (first 5 days)? Does the rate of infection growth
appear exponential or logistic?
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Practical No. 11

Aim

Calculate the growth of an investment with annual compounding interest over discrete
intervals.

Problem

Given an initial investment, annual interest rate, and number of years, calculate the invest-
ment value at the end of each year.

Theory

The investment grows by a fixed percentage each year is given by

Ly =L(1+r),  with I(0)=1I,
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where r is the annual interest rate.

Algorithm

Step 1: Define [y, r and the number of years NV,
Step 2: Use a loop to calculate the investment value at each interval,
Step 3: Plot the discrete growth over time.

Program

I0 = 1000; % Initial investment
r = 0.05; % Interest rate (5%)
N = 10; % Number of years

I = zeros(1, N);

I(1) = I0;

for n = 2:N

I(m) =I(n-1) * (1 + 1);

end
plot(1:N, I, ‘bo-’, ‘LineWidth’, 2);

title(‘Discrete Compound Interest Model’);
xlabel(‘Years’);

ylabel(‘Investment Value’);

grid on;

Output

A stepwise plot showing the investment growing each year, with each step higher due to
the compounding effect.

Exercise Problem

You are working with a financial advisor to calculate the growth of an investment over a
period of time. The initial parameters for the investment are as follows: initial investment
(Ip) = 1500, annual interest rate (r) = 4% (0.04), number of years (N) = 20. Use the
formula for annual compounding interest to compute the value of the investment at the end
of each year over 20 years. Write a MATLAB program to calculate and store the investment
values for each year. Plot the investment growth over the 20 years as a stepwise graph.
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Discrete Compound Interest Model
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Practical No. 12

Aim

To analyze the stability of the equilibrium point for the predator-prey system using Jacobian
analysis.

Problem

Given a predator-prey model, determine the stability of the systems equilibrium points.

Theory

The Jacobian matrix for the system

d—x:ax—ﬁxy

dt
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d—yzémy—vy
dt
is
s ]
oy ox —ry

Evaluating this matrix at equilibrium points allows us to analyze stability.

Algorithm

Step 1: Find the equilibrium points,

Step 2: Calculate the Jacobian matrix,

Step 3: Determine eigenvalues of the Jacobian at the equilibrium point,
Step 4: Analyze stability based on the sign of the eigenvalues.

Program

syms x y alpha beta delta gamma;

J = [alpha - beta * y, -beta * x; delta * y, delta * x - gamma];
equilibrium = [gamma/delta, alpha/beta];

J_eq = subs(J, {x, y}, equilibrium);

eigenvalues = eig(J_eq);

disp(’Jacobian at equilibrium:’);

disp(J_eq);
disp(’Eigenvalues:’);
disp(eigenvalues);
Output
Jacobian at equilibrium:
[ 0, -(betax*gamma)/deltal
[ (alphaxdelta)/beta, 0]
Eigenvalues:

(-alpha) " (1/2)*gamma” (1/2)
-(-alpha) "~ (1/2) *gamma” (1/2)

The Jacobian matrix and eigenvalues at the equilibrium point, helping determine stability
(eigenvalues with negative real parts indicate stability).
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Exercise Problem

The Lotka-Volterra predator-prey system is given by

d

& = o= B
dy _ s
dr Y=Y,

where z(t) represents the prey population and y(t) is the predator population at time ¢, «
represents the growth rate of the prey, [ is the predation coefficient, v is the natural death
rate of the predators and 0 designates the reproduction rate of predators.
Solve for the equilibrium points of the predator-prey system by setting % =0 and
Express the equilibrium points in terms of the parameters «, [, v, and 9.

&S

= 0.

Practical No. 13

Aim

The aim of the model is to the relationship between supply and demand in an economic
market.

Problem

We are using a system of ordinary differential equations (ODEs) to model the interaction
between supply S and demand D, with the assumption that the rate of change of supply
and demand are functions of the price P.

Theory

The supply S and demand D rates can be expressed by the following system of differential

equations:
ds

E = CL(P — Po),
dD
— = —-b(P - P,
dt ( 0)7
with
S(O) — S(), D(O) — DO,
where

e P is the price,

e [ is the equilibrium price,
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e a and b are positive constants representing sensitivity rates of supply and demand to
price changes.

The supply increases if P > By (price above equilibrium), while demand decreases. Con-
versely, if P < F,, supply decreases, and demand increases as the market tries to reach
equilibrium.

Algorithm

Step 1: Define constants a, b, and Fp,

Step 2: Set initial values for supply S and demand D,

Step 3: Define differential equations. Use ode45 in MATLAB,
Step 4: Solve and plot.

Program

% Economic Model of Supply and Demand

% Define constants

a=20.5; % Sensitivity of supply to price difference
b =0.3; % Sensitivity of demand to price difference
PO = 10; % Equilibrium price

% Set initial conditions for supply and demand
SO = b; % Initial supply
DO = 8; % Initial demand
initial_conditions = [SO, DO];

% Define time span for the simulation
tspan = [0 20];

% Define the system of ODEs

% ds/dt = a * (P - PO)

% dD/dt = -b * (P - PO)

ode_system = @(t, y) [a * (y(2) - PO); -b * (y(2) - PO)];

% Solve the system of ODEs
[t, sol] = ode45(ode_system, tspan, initial_conditions);

% Extract solutions for S and D
S = sol(:, 1);
D = sol(:, 2);

% Plot the results

5



Mathematical Modeling Practical No. 13

figure;
plot(t, S, ‘r-’, ‘LineWidth’, 1.5); hold on;
plot(t, D, ‘b-’, ‘LineWidth’, 1.5);

xlabel (‘Time’);

ylabel (‘Supply and Demand’);

legend(‘Supply (S)’, ‘Demand (D)’);

title(‘Economic Model of Supply and Demand Interaction’);
grid on;

Output

The plot generated by the code will show the interaction between supply and demand over
time as the system adjusts to reach equilibrium.
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Exercise Problem
Write down the system of differential equations representing the supply and demand model

with initial values of supply Sy = 6 and demand Dy = 10, and the parameters a = 0.4,
b=0.6, and Py = 12.

Practical No. 14

Aim

To model two species competing for the same resources and analyze their interaction over
time.

Problem

Consider two competing species  and y, in the same environment. Model how the pop-
ulation of each species changes over time and determine the conditions for coexistence or
dominance of one species.

Theory

The competing species model can be described by

dx ( a:+ay)
— =r,z |1l ,
dt

dy ] Y+ Bz
E_Tyy - )

with

where
e 1, and r, are the growth rates of prey and predator species respectively,
e K, and K, are carrying capacities of x and y respectively,

e o and [ are competition coefficients.
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Algorithm

Step 1: Define parameter r,, 1y, K;, K,, o and j3,
Step 2: Set initial populations for x and y,

Step 3: Define the system of differential equations,
Step 4: Use ode4db to solve the system,

Step 5: Plot the population dynamics.

Program

% Define constants for the competing species model

rx = 0.5; % Growth rate of species x
ry = 0.4; % Growth rate of species y
Kx = 100; % Carrying capacity of species x
Ky = 80; % Carrying capacity of species y

alpha = 0.3; 7% Competition coefficient on x by y
beta = 0.5; 7% Competition coefficient on y by x

% Initial populations and time span
initial_populations = [30, 20];
T = 100;

% Define the system of differential equations
competing_species_model = @(t, Y) [rx * Y(1) * (1 - (Y(1) + alpha * Y(2)) / Kx);
ry * Y(2) * (1 - (Y(2) + beta * Y(1)) / Ky)1;

% Solve the system using ode45b
[time, populations] = ode45(competing_species_model, [0 T], initial_populations);

% Plot the results

figure;

plot(time, populations(:,1), ‘b’, ‘LineWidth’, 1.5); % Plot for species x
hold on;

plot(time, populations(:,2), ‘r’, ‘LineWidth’, 1.5); % Plot for species y
title(‘Competing Species Model’);

xlabel(‘Time’);

ylabel (‘Population’);

legend(‘Species x’, ‘Species y’);

grid on;
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Output

A plot showing the population of both species over time, potentially showing coexistence,
dominance, or extinction.
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Exercise Problem

Consider two species A and B, competing for the same resources, described by the following
system of differential equations:

dA
E :TAA (1—

B B A
d—:TBB(l— +B ),

A—i—aB)

dt

with
A(0) = Ay, B(0) = By,

where r4, = 0.5, rg = 0.3, K4 = 150, K = 100, a = 0.4, = 0.6 with initial values:
Ag = 40, By = 30. **Tasks:**

1. Solve the system using MATLAB’s ‘ode45” and plot the population dynamics of both
species over time (0 to 50).

2. Analyze the plot: Do the populations stabilize or oscillate? Does one species dominate,
or do both coexist?

3. Modify the competition coefficients o and £ to 0.8 and 0.3, respectively, and observe
how the dynamics change.

Practical No. 15

Aim

To model the spread of an infectious disease using the SEIR model, accounting for a latent
(exposed) stage.

Problem

In a closed region, individuals are susceptible (S), exposed (E), infected (I), recovered (R).
Model the progression of the disease over time.

Theory
The SEIR model is described by is
= = PS5,
% =pBSI —ok,
% =oF — I,
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dR
- =~]
dt ry )
with

S(0) = So, E(0) = Ey 1(0) =1I,, R(0) = R,

where o is the rate at which exposed individuals become infectious.

Algorithm

Step 1: Define initial values and parameters 3, ¢ and v,
Step 2: Set up differential equations for S, F, I and R,
Step 3: Use ode4d5 to solve the system,
Step 4: Plot S, F, I, and R over time.

Program

beta = 0.3; % Infection rate

sigma = 0.2; ’» Rate of exposed to infected
gamma = 0.1; % Recovery rate

initial_values = [0.99, 0.01, O, 0]; Y% Initial S, E, I, R values
T = 160;

seir_model = @(t, Y) [-beta * Y(1) * Y(3); beta * Y(1) * Y(3) - sigma * Y(2);
sigma * Y(2) - gamma * Y(3); gamma * Y(3)];

[time, SEIR] = ode45(seir_model, [0 T], initial_values);

plot(time, SEIR(:,1), ‘b’, time, SEIR(:,2), ‘y’, time, SEIR(:,3), ‘r’, time, SEIR
(:,4), ‘g’);

title(‘SEIR Epidemic Model’);

xlabel (‘Time’);

ylabel (‘Population Fraction’);

legend(‘Susceptible’, ‘Exposed’, ‘Infected’, ‘Recovered’);

grid on;

Output

A plot showing the dynamics of each population group over time, illustrating the epidemic
curve with a latent phase.
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SEIR Epidemic Model
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Exercise Problem

Use MATLAB’s ode4b to solve the system of differential equations and plot the time evo-
lution of the susceptible, exposed, infected, and recovered populations over a period of 160
days.

Analyze the epidemic curve: Describe how the number of exposed individuals changes over
time compared to the infected and recovered individuals. Identify the peak of the infected
population. What impact does the latent (exposed) phase have on the spread of the disease
compared to a simpler SIR model?

Practical No. 16

Aim
To model the dynamics that evolve in discrete time steps using difference equations.
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Problem

Analyze a population model where the population changes in discrete steps (e.g., annually),
such as modeling the population growth of a species with annual breeding.

Theory

Difference equations describe the relationships where each term is based on previous terms,
rather than on continuous rates of change. They are essential for modeling systems where
changes occur in distinct intervals.

For example, a simple population model can be described as

b,
P.y1=PF,+1rP, (1 — E) ,

where
e P, is the population at time step n,
e 7 is the growth rate,
e K is the carrying capacity of the environment.

This difference equation is a discrete system analog to the logistic growth model used
in continuous systems.

Algorithm

Step 1: Define parameters r (growth rate) and K (carrying capacity),
Step 2: Set the initial population Py and number of time steps,

Step 3: Create a loop to apply the difference equation iteratively,
Step 4: Plot the population P over time.

Program

r =0.1; % Growth rate

K = 1000; % Carrying capacity
PO = 10; % Initial population
N = 50; % Number of time steps

P = zeros(1, N); % Initialize population array
P(1) = PO; % Set initial population

for n = 1:N-1
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P(n+1) = P(n) + r *x P(n) * (1 - P(n) / K);
end

plot(1:N, P, ‘b-0’);

title(‘Discrete Logistic Growth Model’);
xlabel(‘Time Step’);

ylabel (‘Population’);

grid on;

Output

A plot that illustrates how the population evolves over discrete time steps, stabilizing as it
approaches the carrying capacity K.
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Exercise Problem

Implement the difference equation in MATLAB to compute the population P, over 50 time
steps. Then plot the population P over time. Describe the long-term behavior of the
population. Does it approach a stable value? If so, what is it?

Practical No. 17

Aim

To model the spread of a disease in a population where individuals are infected, recover,
and then become susceptible again (no immunity).

Problem

We consider a population where individuals are susceptible (S) and infected (I). At each time
step, new infections occur, and some infected individuals recover. The SIS model captures
these dynamics, with individuals transitioning between the susceptible and infected states
without gaining immunity:.

Theory

The SIS model equations are given by

Sn-i—l = Sn - BSnIn + 'Vlna

Iy =L, + BSu1, — 71,
where
e S, is the number of susceptible individuals at time n,
e [, is the number of infected individuals at time n,
e [ is the infection rate,

e 7 is the recovery rate.

This model assumes a closed population without any demographic effects.
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Algorithm

Step 1: Define parameters Iy, Sy, 3, v, N,

Step 2: Set up iterations: define total simulation time steps,

Step 3: Initialize arrays: prepare arrays to store S and I at each time step,

Step 4: Iterate SIS model: compute Sn+1) and I(n+1) for each time step using difference
equations,

Step 5: Plot results: display susceptible and infected populations over time.

Program

% Parameters for the SIS Model
beta = 0.3; % Infection rate
gamma = 0.1; % Recovery rate

N = 1000; % Total population

% Initial conditions

SO = 990; % Initial number of susceptible individuals
I0 = 10; % Initial number of infected individuals
T = 50; % Total number of time steps

% Initialize arrays to store susceptible and infected populations
S = zeros(1, T+1);
I = zeros(1, T+1);

% Set initial values
S(1) S0;
I(1) I0;

% Iterate the SIS model equations over time

for n = 1:T
S(n+1) = S(n) - beta * S(n) * I(n) / N + gamma * I(n);
I(n+1) = I(n) + beta * S(n) * I(n) / N - gamma * I(n);
end

% Plotting the SIS model results

figure;
plot(0:T, S, ‘b-’, ‘LineWidth’, 2); hold on;
plot(0:T, I, ‘r-’, ‘LineWidth’, 2);

xlabel(‘Time Steps’);

ylabel (‘Number of Individuals’);

title(‘SIS Model: Disease Spread in a Population’);
legend(‘Susceptible (S)’, ‘Infected (I)’);

grid on;
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Output

The plot will show the dynamics of susceptible (S) and infected (I) populations over time.
The susceptible population decreases as infections rise, then stabilizes as recovered individ-
uals rejoin the susceptible pool.

Infected individuals initially increase, then stabilize or oscillate around an equilibrium as
infections and recoveries balance. This reflects a steady state in disease spread, with no
immunity, as susceptible and infected groups continuously interact.
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Exercise Problem
Implement an SIS model using the difference equations in MATLAB to compute the number
of susceptible and infected individuals over 50 time steps. Plot the number of susceptible

and infected individuals over time. Analyze the long-term behavior of the disease spread.
Does the number of infected individuals stabilize or fluctuate over time?

Practical No. 18
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Aim

To model population growth with environmental stress affecting the carrying capacity.

Problem

Consider a population with an initial size of 500 and a carrying capacity of 2,000. Due to
an environmental stress factor, the carrying capacity is decreased by 5% every year. The
growth rate is 5% per year. Model the population over 20 years.

Theory

The logistic growth model with a time-dependent carrying capacity K (t) is:

P,
Pn+1:Pn+rPn(1_E)7

with P(0) = Fy, where
e P, is the population at time n,
e 7 is the growth rate (5%),

e [, is the carrying capacity at time n, which decreases by 5% annually.

Algorithm

Step 1: Set the initial population Fy = 500, growth rate » = 0.05, initial carrying capacity
Ko = 2000, and annual decrease in carrying capacity (5%),

Step 2: Define the number of years,

Step 3: Use a loop to iteratively calculate population with decreasing carrying capacity,
Step 4: Plot the population over time.

Program

r = 0.05; % Growth rate

KO = 2000; % Initial carrying capacity
PO = 500; % Initial population

N = 20; % Number of years

K_decrement = 0.05 * KO; 7% Annual decrease in carrying capacity

p
K

zeros (1, N);
zeros(1l, N);
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P(1)
K(1)

PO;
KO;

for n = 1:N-1
P(n+1) = P(n) + r * P(n) * (1 - P(n) / K(n));
K(n+1) = K(n) - K_decrement;

end

plot(1:N, P, ‘b-0’);
title(‘Logistic Growth with Environmental Stress’);
xlabel(‘Year’);

ylabel (‘Population’);
grid on;

Output

A plot showing population growth with an initially rapid increase that slows as the carrying
capacity decreases due to environmental stress.

Exercise Problem
Implement the logistic growth model using the difference equation in MATLAB, accounting
for the 5% annual decrease in carrying capacity. Plot the population over 20 years. Analyze

the impact of the decreasing carrying capacity on long-term population growth. How does
the environmental stress affect the population dynamics?

Practical No. 19

Aim

To model the spread of an infectious disease with an SIR model, incorporating vaccination.

Problem
In a population of 10,000, 100 individuals are initially infected. The transmission rate is
0.3, the recovery rate is 0.1, and the vaccination rate is 0.05. Model the disease spread over

100 days.
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Logistic Growth with Environmental Stress
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Theory

The SIR model with vaccination is given by the following system of ordinary differential
equations

as
= — _BST —
dl
— =BS5S —~I
dt 6 77
dR
kN §
dt rYJ

with S(0) =Sy, 1(0) =1y, R(0)= Ry, where
e S is the susceptible population,
e [ is the infected population,
e R is the recovered population,

e [ is the transmission rate,
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e 7 is the recovery rate,

e 41 is the vaccination rate.

Algorithm
Step 1: Set initial values for the SIR model,

Step 2: Implement a numerical solution using Eulers method,
Step 3: Plot the results for S, I and R.

Program

% Initial values and parameters for the SIR model with vaccination

S0 = 9999; % Initial susceptible population
I0 = 100; % Initial infected population

RO = 0; % Initial recovered population
beta = 0.3; % Transmission rate

gamma = 0.1; % Recovery rate

mu = 0.05; % Vaccination rate

N = 100; % Number of days

dt = 1; % Time step (1 day)

% Initialize arrays for storing population values over time

S = zeros(1, N);
I = zeros(1, N);
R = zeros(1, N);
S(1) = 80;
I(1) = I0;
R(1) = RO;

% Total population (constant)
TotalPop = SO + IO + RO;

% Simulation loop for SIR model
for t = 1:N-1
dS = (-beta * S(t) * I(t) / TotalPop - mu * S(t)) * dt;

dI = (beta * S(t) * I(t) / TotalPop - gamma * I(t)) * dt;
dR = (gamma * I(t) + mu * S(t)) * dt;

S(t+1) = S(t) + dS;

I(t+1) = I(t) + dI;

R(t+1) = R(t) + dR;

end
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% Plot the results

figure;

plot(1:N, S, ‘g-o’, 1:N, I, ‘r-o’, 1:N, R, ‘b-0’);
title(‘SIR Epidemic Model with Vaccination’);
xlabel(‘Days’);

ylabel (‘Population’);

legend (‘Susceptible’, ‘Infected’, ‘Recovered’);
grid on;

Output

A plot showing the dynamics of susceptible, infected, and recovered populations over time,
with the infection rate declining due to the vaccination effect.
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SIR Epidemic Model with Vaccination
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Exercise Problem
Implement the SIR model with vaccination using FEulers method in MATLAB. Simulate
the disease spread for 100 days. Plot the time series of susceptible, infected and recovered

populations. Analyze the effect of vaccination on the disease spread. How does vaccination
influence the number of infected individuals over time?

Practical No. 20

Aim

To model the repayment of a loan using difference equations and analyze the solution using

MATLAB.
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Problem

Given an initial loan amount, monthly repayment amount, and interest rate, we aim to
model the repayment of the loan over time using a difference equation.

Theory
The repayment of a loan can be described by the difference equation as
Lpii=L,(147r)— M,
with L(0) = Lo, where
e [, is the amount of loan at month n,

e r is the monthly interest rate,

e M is the monthly repayment amount.

Algorithm

Step 1: Define parameters: initial loan amount Lj, monthly repayment M, interest rate
r, and number of months NNV,

Step 2: Initialize array: store loan amounts at each month,

Step 3: Calculate: use a loop to compute the loan amount at each month using the
difference equation,

Step 4: Plot: Visualize loan repayment over time.

Program

% Parameters

LO = 10000; % Initial loan amount
M = 500; % Monthly repayment

r = 0.01; % Monthly interest rate
N = 24; % Number of months

% Initialize loan amount array
L = zeros(1, N+1);
L(1) = LO;

% Iterate using the difference equation
for n = 1:N

L(n+1) = L(n) *x (1 + 1) - M;
end
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% Plotting the results

figure;

plot(0:N, L, ‘r-o’, ‘DisplayName’, ‘Loan Amount’);
xlabel(‘Months’);

ylabel(‘Loan Amount’);

title(‘Loan Repayment over Time’);

legend;

grid on;

Output

MATLAB program will generate a plot showing the loan repayment over time. The x-axis
represents the number of months, and the y-axis represents the loan amount. The plot will
show a decrease in the loan amount due to monthly repayments and interest.
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Exercise Problem

Write a MATLAB program to simulate the loan repayment over 24 months using the
difference equation. Plot the loan amount over time (number of months). How does the
loan amount decrease over time? Does it follow the expected pattern of reducing due to
the monthly repayments and accumulating interest?
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Chapter 4

Elementary Number Theory

Practical No. 1

Aim

To write a MATLAB program to find the factor of a given positive integer.

Problem

Write a program to compute the factors of n = 50.

Theory

The factor of a positive integer is an integer that divides the given integer.

Algorithm

Step 1: Define the integer n = 50;
Step 2: Compute the factors of n using the command factor (n);
Step 3: Output the factors using the command disp;

Step 4: After writing the code press the green triangle button (») to run the code.

Program

clc

clear

%Set the integer n==50
n=50;
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%Compute the factor of n=50.
f = factor(50);
%The output

disp([’Factor of n = ’ num2str(n) ’ are:’]);
disp(f);
Output
Factor of n = 50 are:
2 5 5
Conclusion

The program correctly computes the factors of the given positive integer.

Exercise Problem

Write a program to compute the factors of n = 120.

Practical No. 2

Aim

To write a MATLAB program to find the divisors of a given positive integer.

Problem

Write a program to compute all possible divisors of n = 100.

Theory

The divisor of an integer is an integer that completely divides the given integer leaving
remainder 0.

Algorithm:

Step 1: Take the input of the integer n;

Step 2: Compute the divisors using the command finddivisor(n);
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Step 3: Output the divisors using the command disp;
Step 4: Define the function finddivisor(n);

Step 5: After writing the code press the green triangle button (») to run the code.

Program:

% Find divisors of a positive integer
clc;

clear;

n= fix(input("Enter an integer : ")) ;

divisors = finddivisors(n);
fprintf("Divisors of J%d :\n", n)
disp(divisors)

function divisors = finddivisors(n) %find divisors of an integer
divisors = [];
for i = 1:n

if mod(n, i) ==
divisors = [divisors, il;
end
end
end
Output

Enter an integer : 100
Divisors of 100 :
1 2 4 5 10 20 25 50 100

Conclusion

The program correctly computes the divisor of the given integer.

Exercise Problem

Write a program to compute all possible divisors divisors of n = 120.

Practical No. 3
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Aim

To write a MATLAB program to find the remainder of a given integer when divided by
some other positive integer.

Problem

Write a program to compute the remainder on division of 123339 by 15

Theory

The remainder r of an integer n when divided by another positive integer m is given by
r =n — ¢.m such that 0 < r < m where ¢ is the quotient of n when divided by m.

Algorithm:

Step 1: Set an integer n = 123339, m = 15.

Step 2: Compute the remainder using the command rem(n,m).
Step 3: Output the remainder using the command disp.

Step 4: After writing the code press the green triangle button (») to run the code.

Program:

clc

clear

%set an integer
n=12339;

hset divisor

m=15;

%hcompute the remainder
r = rem(n,m);

houtput

disp([’The remainder of n = ’ num2str(n) ’ when divided by m = ’ num2str(m) ’ is:’]);
disp(r)

Output

The remainder of n = 12339 when divided by m = 15 is:
9
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Conclusion

The program correctly computes the remainder of the given integer when divided by a
positive integer.

Exercise Problem

Write a program which takes input of an integer n and decides if it is odd or even by
calculating remainder of division of n by 2. Run the program for n = 20 and n = 97.

Practical No. 4

Aim
To write a MATLAB program to find the greatest common divisor (GCD) of given positive

integers.

Problem

Write a program to compute the greatest common divisor (GCD) of 28,68 and 104.

Theory

The greatest common divisor (GCD) of two or more integers is the largest positive integer
that divides all those integers without remainder.

Algorithm
Step 1: Set the integers nl = 28, n2 = 68,n3 = 104;

Step 2: Compute the greatest common divisor (GCD) using command n = gcd(nl,n2)
and k = gcd(n,n3);

Step 3: Output the greatest common divisor (GCD) using command disp;
Step 4: After writing the code press the green triangle button (») to run the code.
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Program

clc

clear

%set the integers nl, n2 and n3
nl1=28;

n2=638;

n3=104;

%hcompute the GCD
n=gcd(nl,n2);
k=gcd(n3,n) ;
houtput
disp([’GCD:’]1);
disp (k)
Output

GCD:
4

Conclusion

The program correctly computes the greatest common divisor (GCD) of the given integers.

Exercise Problem

Write a program to test if two given positive integers nl and n2 are coprimes. Run your
program for nl = 20 and n2 = 32.

Practical No. 5

Aim

To write a MATLAB program to find the least common multiple (LCM) of integers.

Problem

Write a program to find the least common multiple of 15,20 and 50
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Theory

The least common multiple (LCM) of two or more integers is the smallest positive integer
that is divisible by all those integers.

Algorithm

Step 1: Set the integers nl = 15,n2 = 20,n3 = 50;
Step 2: Compute the LCM using the command 1lcm;
Step 3: Output the result using the command disp;

Step 4: After writing the code press the green triangle button (») to run the code.

Program

clc

clear

%set the integers nl, n2 and n3
nl=15;

n2=20;

n3=50;

%compute the LCM
n=lcm(nl,n2);
k=1lcm(n3,n);
houtput

disp (k)

Output

LCM:
300

Conclusion

The program performs correctly to find the least common multiple (LCM) of integers.

Exercise Problem

Write a program to find the least common multiple of 23,25 and 100

103



Elementary Number Theory Practical No. 6

Practical No. 6

Aim

To solve linear congruences using MATLAB.

Problem
Write a program to solve linear congruence given by

122 = 9(mod15);

Theory

A linear congruence is an equation of the form:ax = b (mod m where m # a. Incongruent
solutions of this linear congruence form a subset of {0,1,2,...,m — 1}.

Algorithm

Step 1: Calculate the incongruent solutions of the given linear congruence using solvelinearcongruence (12,
9, 15);

Step 2: Output using the command fprintf;

Step 3: Define the function solvelinearcongruence(a, b, m).

Program

clc ;

clear ;

a = 12;

b =9;

m = 15;

solutions = solvelinearcongruence(a, b, m);

if isempty(solutions)
fprintf (’The linear congruence %dx
else
fprintf (’The linear congruence 7%dx = ’%d(mod %d) has following solutions:\n’, a, b, m);
disp(solutions);

%d(mod %d) has no solutions.\n’, a, b, m);

end
function solutions = solvelinearcongruence(a, b, m)
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ifm<O
error ("Error. \nThe modulus must be positive integer.")
end

d = gcd(a, m);

if mod(b, d) ==
solutions = zeros(l, d);
idx = 1;

for x = 0:(m-1)
if mod(a*x - b, m) ==
solutions(idx) = x;
idx = idx + 1;
end
end
else
solutions = [];
end
end

Output

The linear congruence 12x = 9(mod 15) has following solutions:
2 7 12

Conclusion

The program correctly finds the solution of linear congruence equation.

Exercise Problem

Write a program to solve the linear congruence 30z = 8 (mod 9).

Practical No. 7

Aim
To write a MATLAB program to find the Mersenne numbers.
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7

Problem

Write a program to find the first 10 Mersenne numbers.

Theory

A Mersenne number is a number of the form M(n) = 2" — 1, where n is an integer.

Algorithm

Step 1: Set the range n using command linspace(1, 10, 10);

Step 2: Calculate the Mersenne number using formula mersenne_num = 2" — 1;
Step 3: Make a table using command table;

Step 4: Check whether system has trivial solution or infinite solutions;

Step 5: Output the solution using the command disp;

Step 6: Run the code by pressing the run button.

Program

clc;

clear;

n = linspace(1, 10, 10) ;

mersenne_num = 2.°n - 1 ;

tl = table(n’, mersenne_num’,’VariableNames’,{’n’,’Mersenne number’}) ;
disp(tl)

Output

n Mersenne number

15
31
63
127
255

0 ~NO O WN -
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9 511
10 1023
Conclusion

The program correctly computes the first 10 Mersenne numbers.

Exercise Problem

Write a program to test if a given number is a Mersenne number. Run the program for
n = 8191.

Practical No. 8

Aim

To write a program to find the first 8 Mersenne primes.

Problem

Write a program to determine the first 8 Mersenne primes.

Theory

A Mersenne prime is a prime number of the form M (p) = 2” — 1, where p is prime number.

Algorithm

Step 1: Find the 8 Mersenne primes using the function mersenneprimes(8);
Step 2: Output the result using the command fprintf.

Step 3: Define the function mersenneprimes(n) to return n Mersenne primes;

Program
clc;
clear;

n = 8;
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[primes, mprimes] = mersenneprimes(n);

tl = table((1:n)’, primes’, sym(mprimes’), ’VariableNames’, {’n’, ’p’,’Mersenne prime’});
disp(tl);

function [primes, mprimes] = mersenneprimes(n)
if n<1
error (’n should be at least 1.7)
end

primes = zeros(l, n);
mprimes = primes;

idx = 1;

p = 2;

while idx <= n
mp = 2°p - 1;

if isprime(p) && isprime(mp)
primes(idx) = p;
mprimes(idx) = mp;
idx = idx + 1;

end
p=p+1
end
end
Output
n P Mersenne prime
1 2 3
2 3 7
3 5 31
4 7 127
5 13 8191
6 17 131071
7 19 524287
8 31 2147483647
Conclusion

The program correctly find the first 8 Mersenne primes.
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Exercise Problem

Write a program to test if a given number is a Mersenne prime. Run the program for
n = 8191.

Practical No. 9

Aim

To write a MATLAB program to find the first 8 even perfect numbers.

Problem

Write a program to compute the first 8 perfect numbers.

Theory

A perfect number is a positive integer that is equal to the sum of its proper divisors (all
divisors excluding the number itself). The Euclid-Euler theorem states that an even number
is perfect if and only if it has the form 2P~! (2P — 1), where (2P — 1) is a Mersenne prime
for any prime p.

Algorithm

Step 1: Find the 8 Mersenne primes using the function perfectNumbers(8);
Step 2: Output the result using the command fprintf.

Step 3: Define the function perfectNumbers(n) to return n Mersenne primes.

Program

clc;

clear;

n = 8§;

[primes, perfect] = perfectNumbers(n);

tl = table((1:n)’, primes’, sym(perfect’), ’VariableNames’, {’n’, ’p’,’Perfect Nu
disp(tl);

function [primes, perfect] = perfectNumbers(n)
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if n < 1
error(’n should be at least 1.°)
end

primes = zeros(l, n);
perfect = primes;
idx = 1;

p=2;
while idx <= n
mp = 2°p - 1;
if isprime(p) && isprime(mp)
primes(idx) = p;
perfect(idx) = 27 (p - 1)*mp;
idx = idx + 1;

end
P=p+1
end
end
Output
n P Perfect Number
1 2 6
2 3 28
3 5 496
4 7 8128
5 13 33550336
6 17 8589869056
7 19 137438691328
8 31 2305843008139952128
Conclusion

The program correctly computes first 8 even perfect number.

Exercise Problem

Write a program to test if a given number n is an even perfect number. Run the program
for n = 28.
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Practical No. 10

Aim

To write a MATLAB program to find the order of an integer a modulo m.

Problem

Write a program to compute the order of 2 modulo 385.

Theory

The order of an integer a modulo m is the smallest positive value of  which satisfies the
congruence -
a® = 1(mod m), gcd(a,m)=1.

Algorithm
Step 1: Set the integers m = 385, a = 2;
Step 2: If a and m are coprimes, then calculate the order and print;

Step 3: Otherwise, print the error.

Program

clc ;

clear;

m = 385 ;

a = 2;

if (gcd(a,m) == 1)
phi = eulerPhi(m);
ord = 1;

for d = divisors(phi)
if (powermod(a, d, m) == 1)
ord = d;
break;
end
end
fprintf ("The order of %d modulo %d is %d.\n", a, m, ord);
else
error(’a and m must be coprime. i.e gcd(a,m) = 1)
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end

Output

The order of 2 modulo 385 is 60.

Conclusion

The program correctly computes the order of 2 modulo 385.

Exercise Problem

Write a program to compute the order of 7 modulo 32.

Practical No. 11

Aim

To write a MATLAB program to find the primitive roots modulo m.

Problem

Write a program to compute all primitive roots modulo 11.

Theory

An integer g is a primitive root modulo n if for every integer a coprime to n, there is some
integer k for which
¢* = a mod n.

Algorithm

Step 1: Set the value G = Z,,.
Step 2: Compute the primitive roots using the command isPrimitiveRoot (G, 11).

Step 3: Output the primitive roots using the command disp.
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Program

clc

clear

n=11;

G=1:11;

isPR = isPrimitiveRoot (G, 11);

PR = G(isPR);% all primitive roots

disp([’All the primitive roots modulo ’ num2str(n) ’ are as following:’])
disp(PR)

Output:

All the primitive roots modulo 11 are as following:
2 6 7 8

Conclusion:

The program successfully computes all the primitive roots modulo 11.

Exercise Problem

Given two positive integers a and b, write a program to check if a is a primitive root modulo
b. Run the program for a = 2 and b = 5.

Practical No. 12

Aim

To write a program to find the Euler totient function Phi of an integer.

Problem

Write a program to find the value of Euler Phi function for n = 50.

Theory

The Eulers Totient function ¢(n) counts the number of positive integers up to n, that are
relatively prime to n.
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Algorithm

Step 1: Set an integer n = 50;
Step 2: Compute the value of Euler Phi function using the command eulerPhi (n);

Step 3: Output the Euler phi function value using the command fprintf.

Program

clc;

clear;

n = 50;

phi = eulerPhi(n);

fprintf ("The Euler’s Totient phi(%d) = %d.\n", n, phi)

Output

The Euler’s Totient phi(50) = 20.

Conclusion

The program successfully computed the value of Euler phi function at n = 50.

Exercise Problem

Write a program to find the value of Euler Phi function for n = 120.

Practical No. 13

Aim

To write a MATLAB program to find the first 10 Fibonacci numbers.

Problem

Write a program to find the first 10 Fibonacci numbers.
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Theory

The Fibonacci numbers are the sequence 0,1,1,2,.... The Fibonacci sequence can be
defined recursively as ap = 0, a; = 1 and

Qp = Ap—1 + Qp—2, n > 2.

Algorithm
Step 1: Set the number n =1 : 10;

Step 2: Compute the Fibonacci number using the command fibonacci(n).

Program

clc;

clear;

n=1:10;

k = fibonacci(n)

Output

k =

Conclusion

The program correctly finds the first 10 Fibonacci numbers.

Exercise Problem

Write a program to find the n'® Fibonacci number. Run the program for n = 15.

Practical No. 14

Aim
To write a MATLAB program to find triangle numbers.
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15

Problem

Write a program to determine the first 10 triangle numbers.

Theory

An integer is called a triangle number if it is the sum of consecutive natural numbers.

Algorithm

Step 1: Set the number n = 10;

Step 2: Compute the triangle number using the function tringlenumbers(n);

Step 3: Define the function trianglenumbers(n).

Program

clc;

clear;

n = 10;

result = trianglenumbers(n);

fprintf ("First %d triangle numbers are:\n’, n);

disp(result);

function result = trianglenumbers(n)

result = [];
sum = O;
for i=1:n
sum = sum+i;
result = [result sum];

end
end
Output
First 10 triangle numbers are:
1 3 6 10 15
Conclusion

21 28 36 45

The program correctly finds the first 10 triangle numbers.
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Exercise Problem

Write a program which checks if a given number n is a triangle number or not.

Practical No. 15

Aim

To write a MATLAB program to compute the Lucas numbers.

Problem

Write a program to compute the first 10 Lucas numbers.

Theory
The Lucas numbers are the members of the sequence defined by a; = 2, a = 1 and
Qp = Qp—1 + Qp—2

. The first few members of the sequence are 2,1,3,....

Algorithm

Step 1: Set the number n = 10;
Step 2: Compute the Lucas number using the user define command lucasnumbers(n);

Step 3: Define a user function by lucasnumbers(n).

Program:

clc;
clear;
n = 10;
result = lucasnumbers(n);
fprintf ("First %d Lucas numbers are:\n’, n);
disp(result);
function result = lucasnumbers(n)
result = [2, 1];
if(n > 2)
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16

for i = 3:n
result = [result, result(end) + result(end-1)];

end
end
end
Output:
First 10 Lucas numbers are:
2 1 3 4 7 11 18 29 47 76
Conclusion:

The program successfully computes the first 10 Lucas numbers.

Exercise Problem

Write a program to find the n'" Fibonacci number. Run the program for n = 15.

Practical No. 16

Aim

To write a MATLAB program to find nth Fermat numbers.

Problem

Write a program to compute first 5 Fermat numbers.

Theory

A Fermat number is defined as k = 22" + 1, where n is 0, 1, 2,....

Algorithm
Step 1: Set n=1:5;
Step 2: Compute the first five Fermat numbers using the formula k = 22" 4 1;

Step 3: Output the results using the command disp.
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Program

clc;

clear;

n = 5;

result = fermatnumbers(n);

fprintf ("First %d Fermat numbers are:\n’, n);

for i = 1:n
fprintf (°\t%d’, result(i));
end
fprintf(’\n’);
function result = fermatnumbers(n)
result = sym(2.7(2.7(1:n)) + 1);
end

Output

First 5 Fermat numbers are:
5 17 257 65537 4294967297

Conclusion

The program successfully computes the 9th Fermat number.

Exercise Problem

Write a program to find the n'" Fermat number. Run the program for n = 8.

Practical No. 17

Aim

To write a MATLAB program to check the Pythagorean triplet.

Problem

Write a program to check whether a given triplet (3, 4, 5) is Pythagorean triplets or not.
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Theory

The Pythagorean triplet (a, b, c) are the positive integers such that

a’ + b =2

Algorithm
Step 1: Input a, b and c;
Step 2: Check if a, b and c satisfy a? + b* = ¢?;

Step 3: Output the result using the command fprintf.

Program

clc;

clear;

a = input("Enter the value a: ");
b = input("Enter the value b: ");
¢ = input("Enter the value c: ");

if a™2 + b™2 == ¢c72

fprintf (’ (%d, %d, %d) is a Pythagorean triplet.\n’, a, b, c);
else

fprintf (’ (%d, %d, %d) is a NOT Pythagorean triplet.\n’, a, b, c);
end

Output

Enter the value a: 3
Enter the value b: 4
Enter the value c: b
(3, 4, 5) is a Pythagorean triplet.

Conclusion

The Pythagorean triplet can be easily verified through the above program.

Exercise Problem

Write a program to decompose a non-negative integer n in four squares. Run the program
for n = 23.
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Practical No. 18

Aim

To write a MATLAB program to verify a pair of integers (a, b) for amicability.

Problem

Write a program to check whether a pair (a, b) of integers is amicable.

Theory

A pair (a,b) is said to be amicable if sum of proper divisors of a (except a) is equal to b
and sum of proper divisors of b (except b) is equal to a.

Algorithm

Step 1: Input a and b;

Step 2: Set s; = the sum of all divisors of a except a;

Step 3: Set sy = the sum of all divisors of a except b;

Step 4: Compute whether a = s, and b = s; using if and else command;

Step 5: Output the result using the command fprintf.

Program

clc;
clear;
a = input("Enter the value of a: ");
b = input("Enter the value of b: ");
s1 = sum(divisors(a)) - a;
82 = sum(divisors(b)) - b;
if s2==a && sl==
fprintf (’ (%d, %d) are amicable numbers\n’, a, b);
else
fprintf (° (%d, %d) are NOT amicable numbers\n’, a, b);
end
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Output

Enter the value of a: 220
Enter the value of b: 284
(220, 284) are amicable numbers

Conclusion

The program successfully verifies whether the pair (a, b) is amicable or not.

Exercise Problem

Write a program to check whether a pair (a, b) of amicable integers is regular or exotic.

Practical No. 19

Aim

To write a program to find Legendre symbol.

Problem

Write a program to find Legendre symbol of quadratic residue 4 modulo 17.

Theory
The Legendre symbol is a multiplicative function with values 1, —1, 0 that is a quadratic

character modulo an odd prime p. Its value at a quadratic residue is 1 and —1 at non
residue quadratic character modulo p. Its value at 0 is 0.

Algorithm:

Step 1: Input a and p;
Step 2: Compute the result using Legendresymbol(a, p);
Step 3: Define the function Legendresymbol(a, p).
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Program

clc;

clear;

a = input("Enter the value of a: ");

p = input("Enter the value of p: ");

result = Legendresymbol(a, p);

fprintf (’LegendreSymbol (%d, %d) = %d.\n’, a, p, result);

function result = Legendresymbol(a, p)

if (p <= 1) || “isprime(p)
error(’p must be a prime.’)
else
if a ==
result = 0;
return;
end
if p ==

if mod(a, 2) == 1
result = 1;
else
result = 0;
end
else
if mod(a, p) == 0
result = 0;
else
if powermod(a, (p-1)/2, p) ==
result = 1;
else
result = -1;
end
end
end
end
end

Output

Enter the value of a: 4
Enter the value of p: 17
LegendreSymbol(4, 17) = 1.
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Conclusion

The program correctly finds the Legendre symbol of quadratic character of a modulo p.

Exercise Problem

Write a program to find Legendre symbol of quadratic residue 6 modulo 7.
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Numerical Analysis

Practical No. 1

Aim

To find the root of an equation using Mathematica with various numerical techniques.

Problem

Find the root of the following polynomial in the interval [1,2] by using bisection method
correct up to three decimal places.

2 +422-10=0

Algorithm

Stepl: Define the function f(x) =2® —4z —9 =0 and let a = 1 and b = 2;
Step2: Check f(a)f(b) < 0. If this is the case then there is a root in [a, b];
Step3: Calculate ¢ = “T“’;

Step4: If f(c) =0, the c is a root of polynomial f. Stop and return ¢;
Step5: sign(f(a)) # sign(f(c)) the assign b = ¢, else a = ¢;

Step6: Repeat steps 3-5 until the convergence is achieved i.e.tol < 107%;
Absolute error (tol) up to three decimal is obtained as: tol =| b —a |< 1074

Program
x0 = 1;

x1l =

In[18]:
2.
Nmax =
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eps = 0.0001;
flx] :=x"3+4 + x°2 - 10;

If[N[f[x0] * f[x1]] > O,

Print ["These values do not satisfy the IVP so

For[i = 1, i <= Nmax, i++,
a = (x0 + x1)/2;

If[Abs[(x1 - x0)/2] < eps,

Return([al,

Print[i, "th iteration value is :

Print["Estimated error in ", i,

1;
If[f[a] + f(x1] > 0, x1 = a, x0 =
]

1;
Print["Root is : ", al;
Print["Estimated error in ", i, "th iter
Output
1th iteration value is : 1.5
Estimated error in 1th iteration is : O.
2th iteration value is : 1.75
Estimated error in 2th iteration is : O.
3th iteration value is : 1.625
Estimated error in 3th iteration is : O.
4th iteration value is : 1.5625
Estimated error in 4th iteration is : O.
Bbth iteration value is : 1.53125
Estimated error in 5th iteration is : O.
6th iteration value is : 1.546875
Estimated error in 6th iteration is : O.

7th iteration value is : 1.5390625
Estimated error in 7th iteration is : O.
8th iteration value is : 1.53515625
Estimated error in 8th iteration is : O.
9th iteration value is : 1.537109375
Estimated error in 9th iteration is : O
10th iteration value is : 1.5380859375
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"th iteration is : ", (x1 - x0)/2];

ation is :

25

125

0625

03125

015625

0078125

00390625

.001953125
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(x1 - x0)/2];
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Estimated error in 10th

11th iteration value is :

Estimated error in 11th

12th iteration value is :

Estimated error in 12th

13th iteration value is :

Estimated error in 13th

14th iteration value is :

iteration is : 0.0009765625
1.53759765625

iteration is : 0.00048828125
1.537841796875

iteration is : 0.000244140625
1.5377197265625

iteration is : 0.0001220703125

1.563765869140625

Estimated error in 14th iteration is : 6.103515625e-05

Root is : 1.53765869140625

Estimated error in 14th iteration is : 6.103515625e-05

Practical No. 2

Aim

To find the root of an equation using Mathematica with various numerical techniques.

Problem

Find the root of the following polynomial in the interval [1, 2] by using bisection method
correct up to three decimal places

VI — cos(z) =0

Algorithm

Stepl: Define the function f(z) =/ — cos(x) = 0 and leta = 1 and b = 2;
Step2: Check f(a)f(b) < 0. If this is the case then there is a root in [a,b];
Step3: Calculate “TH’;

Step4: If f(c) = 0, the c is a root of polynomial f.Stop and return c;
Step5: If sign(f(a)) # sign(f(c)) the assign b = c,else a = ¢;

Step6: Repeat Steps 3-5 until the convergence is achieved i.e.tol < 107%;
Absolute error (tol) up to three decimal is obtained as: tol =| b —a |< 1074
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Program

In[28] := (* Bisection Method: By Constructing the Function *)
bisection[f_, xO_, x1_, Nmax_, eps_] :=

If[N[f[x0] * f[x1], 16] > 0,

Print["These values do not satisfy the IVP so change the values."],

yO = x0;

yl = x1;

For[i = 1, i <= Nmax,
a = (y0 + y1)/2;

i++

b

If[Abs[(yl - y0)/2] < eps,
Return[N[a, 811,

Print[i, "th iteration value is :
Print["Estimated error is :

1;

] )

Print["Root is :

Print["Estimated error is :

]

flx_]

If[f[a] * fly1] > 0, yl = a, yO =

", N[a, 16]];
", N[(y1 - y0)/2, 81];

al;

", N[a, 8]];

", N[(y1 - y0O)/2, 8]1;

:= Sqrt[x] - Cos[x];

bisection[f, 1, 2, 20, 0.0001]

Output

1th iteration value

Estimated error is :

2th iteration value

Estimated error is :

3th iteration value

Estimated error is :

4th iteration value

Estimated error is :

5th iteration value

Estimated error is :

6th iteration value

Estimated error is :

7th iteration value
Estimated error is

is :
.75000000
is :
.37500000
is :
.18750000
is :
.09375000
is :
.04687500
is :
.02343750

is

. 0.

1.2500000000000000

0.8750000000000000

0.6875000000000000

0.5937500000000000

0.6406250000000000

0.6640625000000000

: 0.6523437500000000
01171875
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8th iteration value is : 0.6464843750000000
Estimated error is : 0.00585938
9th iteration value is : 0.6435546875000000

Estimated error is
10th iteration value
Estimated error is
11th iteration value
Estimated error is
12th iteration value
Estimated error is
13th iteration value
Estimated error is
14th iteration value
Estimated error is
Root is : 0.64163208
Estimated error is

: 0.00292969

is : 0.6420898437500000

: 0.00146484

is : 0.6413574218750000

: 0.00073242

is : 0.6417236328125000

: 0.00036621

is : 0.6415405273437500

: 0.00018311

is : 0.6416320800781250

: 0.00009155

: 0.00009155

Practical No. 3

Aim

To find the root of an equation using Mathematica with various numerical techniques.

Problem

Write a Mathematica program to approximate v/3 correct upto two decimal places using
Bisection Algorithm.

Algorithm

Note that v/3 is the only root of f(x) = 2% — 3 in [1,2];

Stepl: Let a =1 and b = 2;

Step2: Check f(a)f(b) < 0.If this is the case then there is a root in [a, b];
Step3: Calculate “TH’;

Step4: If f(c) = 0, the c is a root of polynomial f. Stop and return c;
Step5: If sign(f(a)) # sign(f(c)) the assign b = ¢, else a = ¢;

Step6: Repeat Steps 3-5 until the convergence is achieved i.e., tol < 1073.
Absolute error (tol) up to three decimal is obtained as: tol =| b —a |< 1073,

Program
x0 = Input["Enter first guess "];
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x1 = Input["Enter second guess "];

Nmax = Input["Enter maximum number of iterations : "];
eps = Input["Enter a value of convergence parameter : "];
Print["x0 = ", x0];

Print["x1 = ", x1];

Print["Nmax = ", Nmax];

Print["epsilon = ", eps];

flx ] := x°3 - 3;
Print["f(x) = x°3 - 3"];

If[N[f[x0] * f[x1]] > O,
Print ["These values do not satisfy the IVP so change the values."],

For[i = 1, i <= Nmax, i++,
a = (x0 + x1)/2;

If[Abs[(x1 - x0)/2] < eps, Return[N[a, 16]]];

If[fla] * f[x1] > 0, x1 = a, x0 = a];

Print[i, "th iteration value is : ", N[a, 16]];
Print["Estimated error is : ", N[xl1 - x0, 16]];
1;
Print["Root is : ", Nl[a, 16]];
Print["Estimated error is : ", N[xl1l - x0, 16]1];

1;

Plot[f[x], {x, -1, 3}]

Output

x0 =
x1l =
Nmax 20;

epsilon = 0.001;

)

I

N =
o

flx_] = -3 + x72;

For[i = 1, i <= Nmax, i++,
a = (x0 + x1)/2;
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If[Abs[(x1 - x0)/2] < epsilon, Return([N[a, 16]]];

Print[i, "th iteration value is : ", N[a, 16]1];
Print["Estimated error is : ", N[(x1 - x0)/2, 16]1];

If(f[a] * f[x1] > 0, x1 = a, x0 = al;
1;

Return[N[a, 16]];

Practical No. 4

Aim

To find the root of an equation using Mathematica with various numerical techniques.

Problem

Write a Program to find the first approximation to the root of the function f(z) = sin(z)—=z
in the interval [1, 2] using Secant method.

Algorithm

Stepl: Choose initial guesses xg and x; such that xy # z;.
Step2: Evaluate x5 as
. wof(w1) — 21 f(20)

2T T @) — f(wo)

Program
x0 = 2;
x1 = 3;

flx_] := x72 - 6;

Print["f(x) = ", f[x]];

x2 = N[x1 - (£[x1] / ( (f[x] /. x => x1) - (f[x] /. x => x0) ) * (x1 - x0) )];
Print["Root is : ", x2];
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Output

f(x) =x"2 -6
Root is : 2.4000000000000000

Practical No. 5

Aim

To find the root of an equation using Mathematica with various numerical techniques.

Problem

Write a program to find the root of the function f(z) = z* —2 —10 = 0 in the interval [1,2]
correct upto three decimal places using Secant method.

Algorithm

Stepl: Choose initial guesses zy and x; such that xg # ;.
Step2: Evaluate nth approximation z,, as,

o xanf(xnfl) - xnflf(xn72)

T (@) — f(@n )

Step3: If f(x,) =0 then z, is an exact root, else =, o = z,,_1 and x,_1 = x,.
Step4: Repeat steps 2 & 3 until f(z,) =0 or | f(x,) |< tolerance(= 107%).

Program
x0 = 1;

x1 = 2;
Nmax = 20;

eps = 0.0001;

flx_ ] := x4 - x - 10;

Print["f (x)

", £lx1];

For[i = 1, i <= Nmax, i++,
x2 = N[x1 - (f[x1] * (x1 - x0)) / ((f[x] /. x > x1) - (f[x] /. x —> x0))];

If[Abs[x1 - x2] < eps, Return[x2], x0 = x1; x1 = x2];

132



Practical No. 6

Numerical Analysis

Print["In ", i, "th Number of iterations the root is :
Print["Estimated error is : ", Abs[xl - x0]];

1;

Print["Root is : ", x2];

Print["Estimated error is : ", Abs[x2 - x1]];

Output

f(x) =x"4 - x - 10

In 1th iteration, the root is : 1.7142857142857100
Estimated error is : 0.2857142857142860

In 2th iteration, the root is : 1.8385312463222300
Estimated error is : 0.1242455320365170

In 3th iteration, the root is : 1.8577757949191400
Estimated error is : 0.0192445485969133

In 4th iteration, the root is : 1.8555528651416900
Estimated error is : 0.0022229297774552

Root is : 1.8555844703303500
Estimated error is : 0.0000316051886582

Practical No. 6

Aim

", x2];

To find the root of an equation using MATLAB with various numerical techniques.

Problem

Write a program to find the roots of polynomial P(z) = 2* — 2.

Algorithm

Stepl: Store the coefficients of the polynomial as a vector.
Step2: Evaluate roots use roots function.
Step3: fprintf is used to print the values of r.
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Program

% Calculates the roots of a single-variable polynomial
% Numeric Roots

% Create a vector to represent the polynomial x"2 - 2
p=1[10-2];

% Calculate the roots
r = roots(p);

% Display the roots
fprintf (‘The root of the equation is: %.3f\n’, r);

Output

The root of the equation is: 1.414
The root of the equation is: -1.414

Practical No. 7

Aim

To find the root of an equation using MATLAB with various numerical techniques.

Problem

Write a program to find a root of the equation by using Newton-Raphson method correct
up to five decimal places.
1’ —4x—9=0

Algorithm

Stepl: Choose an initial approximation z, for the root.
Step2: For each iteration n =0,1,2,.......... ;

e Evaluate the function f(z,) and its derivative f’(x,)
e Update the approximation (z,.) using the formula:

Tt = T )
n
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Step3: Stop if | 2,11 — z, |< 1076

Program

function x = newton_raphson
% Ask the user to input the function as a string
func_str = input(‘Enter the function in terms of x: ’, ‘s’);

% Convert the input string to a function handle
f = str2func([‘@(x) ’ func_strl);

% Ask the user to input the derivative of the function as a string
df_str = input(‘Enter the derivative of the function in terms of x: ’, ‘s’);

% Convert the input string to a function handle for the derivative
df = str2func([‘@(x) °’> df_str]);

% Ask the user to input the initial guess
x0 = input(‘Enter the initial guess: ’);

% Define the tolerance for convergence (five decimal places)
tol = le-6; % This ensures that the result is accurate to five decimal places

% Initialize the current value
x = x0;

% Maximum number of iterations to prevent infinite loop
max_iter = 1000;
iter = 0;

% Newton-Raphson method loop

while true
% Evaluate function and its derivative at the current value
fx = f(x);
dfx = df (x);

% Check if the derivative is zero to avoid division by zero
if dfx ==

error(‘Derivative is zero. The method fails.’);
end

% Calculate the next value using the Newton-Raphson formula
x_next = x - fx / dfx;
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% Check for convergence

if abs(x_next - x) < tol
break;

end

% Update the current value
X = X_next;

% Increment the iteration counter
iter = iter + 1;

% Check for maximum iterations
if iter >= max_iter
error (‘Maximum number of iterations reached. The method may not be converging.’
end
end

% Display the result

fprintf (‘The root is approximately: %.5f\n’, x);
end

Output

Now by using the function newton_raphson we will take input of function and its derivative
from the user. Also, the initial approximation is given by the user.

X = newton_raphson

Enter the function in terms of x: x"3 - 4%x - 9

Enter the derivative of the function in terms of x: 3*x72 - 4
Enter the initial guess: 0.5

The root is approximately: 2.70653

X:
2.7065

Practical No. 8

Aim
To find the root of an equation using Mathematica with various numerical techniques.
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Problem
Write a program to find the root of the equation by using the fixed point iteration method.

e —322=0

Algorithm

Stepl: Rewrite the equation f(z) =0 to z = g(z). (So,9(x) = x + €* — 3z?).
Step2: Select an initial guess zg.
Step3: Iterate using the formula:

Tpy1 = g(lL‘n)

Program
glx_] := Expl[x]/3;
x0 = 0.5;

tol = 107 (-6);
maxIter = 100;

iter = 0;

While[iter < maxIter,
xn = g[x0];

If[Abs[xn - x0] < tol, Return[xn];];
x0 = xn;
iter++;

1;

Print ["Maximum iterations reached without convergence and the root is ", xn];

Output

Return[0.5495737569000427]
"Maximum iterations reached without convergence and the root is " 0.5495737569000

Practical No. 9
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Aim

To find the root of an equation using MATLAB with various numerical techniques.

Problem

Solve % =y + x wih y(0) = 1 using Euler’s Method.

Algorithm

Stepl: Given y/(x) = f(z,y) with initial condition y(zq) = yo.
Step2: Choose a step size h.
Step3: Iterate using:

Ynt1 = Yn + Bf (20, Yn)

Program

% Euler’s Method
f =0(x, y) y + x; % Given function on [0,1]

% Initial conditions

yo = 13
x0 = 0;
endX = 1;

h =0.1; % Step size

% Number of iterations
n = round((endX - x0) / h);

% Initialize variables

x = x0;

y = yO0;

sol = zeros(n+l, 2); % Store (x, y) values
sol(1, :) = [x, yl;

% Euler’s method loop

for i = 1:n
y =y +h* f(x, y); % Euler formula: y(n+l) = y(n) + hxf(x(n), y(n))
x = x + h; % Increment x by step size
sol(i+1l, :) = [x, yl; % Store new (x, y)

end
% Display solution table
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disp(sol)

% Plot the numerical solution
plot(sol(:,1), sol(:,2), ‘-o’)

xlabel(‘x?)
ylabel(‘y’)

title(‘Euler’’s Method Solution’)

grid on

Output

[l e v T v T o S o7 7 R T R 7% R ¥

%)

L1208
. 2008
. 3000
L4800
. 5008
. 6E08
. 7800
. 8008
. 9008
. B0

1.00080
1.1200
1.22080
1.3620
1.5282
1.7218
1.59431
2.1974
2.4872
2.8159
3.1875
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3.5 T T T T T T T T T
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Aim

Practical No. 10

To find the root of an equation using MATLAB with various numerical techniques.

Problem

Solve % = ysin(x) with y(0) = 1 using Heun’s Method.

Algorithm

Stepl: Given y/'(z) = f(z,y) with initial condition y(zq) = yo.
Step2: Choose a step size h.
Step3: Iterate using:

Program

Ypred = Yn + hf(xn7 yn)

Ynt+1 = Yn + g((f('rna yn) + f(wn + h7 ypred))

% Heun’s Method
f = 0(x, y) y * sin(x); % Given function on [0, pil

% Initial conditions

yo = 13
x0 = 0;
endX = pi;

h =0.1; % Step size

% Number of iterations
n = round((endX - x0) / h);

% Initialize variables

x = x0;
y = yO0;

sol = zeros(n+l, 2); 7% Store (x, y) values
sol(1, :) = [x, yl;

’ Heun’s method loop

for i =1
yPred
y=73

n

+

y +h *x f(x, y); % Predictor step (Euler’s method)
h/2 * (f(x, y) + £f(x + h, yPred)); % Corrector step (Heun’s update)
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x = x + h; % Increment x by step size
sol(i+1l, :) = [x, yl]; % Store new (x, y)

end

% Display solution table
disp(sol)

% Plot the numerical solution
plot(sol(:,1), sol(:,2), ‘-o’)
xlabel(‘x’)

ylabel(‘y’)

title(‘Heun’s Method Solution’)
grid on

Output

. Laee
. 2B
. S0
LAaes
. SBeE
. BBeE
. 7 Bee
. BBee
. Saee
BB
1B
. 2288

[l e SR L O T s T s TR R Y

[l el o S e T T T T R T T S ]

.Leaeee
.Lease
LE281
LB456
.BE2ae
1388
. 1985
. 2647
. 3537
L4591
5824
7254
. 5399
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1.3808 2.8775
1.4@08 2.2893
1.5a08 2.5281
1.c808 2.7931
1.7e0a 3.B8851
1.5808 3.4832
1.9a0a 3.7458
2.0808 4,192
2.1808 4.,4895
2.2808 4. 8884
2.3808 5.2744
2.4808 5.B8625
2.5808 G.834a
2.6808 . 3588
2.7808 B.B65873
2.8808 g.2475
2.9808 7.1493
3.ee0a 7.2878
3. leea 7.3538

Practical No. 11
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Aim

To find the root of an equation using MATLAB with various numerical techniques.

Problem

Solve the system of ODEs in [0, 7]

d

d_j =a(y —z) with z(0)=1,

d

d_?tJ =z(b—z2)—y with y(0)=1,
d

d_i =uzy —cz with z(0) =1,

where, a = 10,b = 28,and ¢ = 3.

Algorithm

Stepl: Let ‘2—: = f(z,y,2z) with z(0) = x, % =g(z,y,z) with y(0) =1y, and % =
k(x,y,z) with 2(0) = z.

Step2: Choose a time step size dt, then time t,, = tg + dt, where t5 = 0.

Step3: Iterate for n = 1,2, .... Until the time T is reached using:

Tp+l = Tp + dtf(xm Yn, Zn)

Yn+1 = Yn + dtg(xm Yn, Zn)
Zni1 = 2n + Atk(Tn, Yn, 2n)
with o = 1,90 =1,20 = 1.

Program

% Parameters
a = 10;
b = 28;
8/3;

% System of equations

=0(x, y, z) ax (y - x);
e(x, y, z) x * (b - 2) - y;
Q(x, y, 2) Xx ¥y - Cc * z;

50 Hh
I

% Initial conditions and time parameters
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initialConditions = [1, 1, 1];

t0 = 0;
T = 10;
dt = 0.01;

% Initialize variables

x = initialConditions(1);

y = initialConditions(2);

z = initialConditions(3);

t = t0;

n = round((T - t0) / dt); % Number of time steps

sol = zeros(nt+l, 4); % Store (t, x, y, z) values
sol(1, :) = [t, x, y, z];

% Euler method loop

for i = 1:n
x=x+dt *x £f(x, y, 2);
y =y +tdt x glx, y, 2);
z =2z +dt *x h(x, y, 2);
t =t + dt;

sol(i+1, :) = [t, x, y, z];
end

% Plotting results

figure(1)

plot(sol(:,1), sol(:,2), ‘b’)
xlabel(‘t’)

ylabel(‘x’)

title(‘x vs t’)

grid on

figure(2)

plot(sol(:,1), sol(:,3), ‘r’)
xlabel(‘t’)

ylabel(‘y’)

title(‘y vs t’)

grid on

figure(3)

plot(sol(:,1), sol(:,4), ‘g’)
xlabel(‘t’)

ylabel(‘z’)

title(‘z vs t’)

grid on
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Output

15 ———— 35
3 /
25
-2
2
15
1 /. ) " ) " " " ) ) 1 i 1 1 1 1 L 1 i
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
X X
35

2.5 /

15 -

Practical No. 12

Aim
To find the root of an equation using MATLAB with various numerical techniques.
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Problem

Solve the following ordinary differential equation using Runge-Kutta (RK4) Method.

% =y—t*+1 with y(0)=05 in [0,7)

Algorithm

Stepl: Let % = f(t,y) with initial condition y(ty) = yo.
Step2: Choose a step size dt.
Step3: Iterate using:

kl = dtf(tnv yn)
dt k1

ko =dtf(t — —

2 f(n+2>yn+ 2)
dt k

kSZdtf(tn‘l_?ayn—"?Q)

by = dtf(ty + dt,yo + ks)

1
Ynt1 = Yn + g(kl + 2k + 2k3 + ka)

Program

% RK4 Method for ODE
f =0, y)y-t"2+1; % Given function

yO = 0.5; % Initial condition
t0 = 0; % Start time

T =2; % End time

dt = 0.1; % Step size

n = round((T - t0) / dt); % Number of iterations

t = t0; % Initialize time
y = y0; % Initialize solution
sol = zeros(n+l, 2); % Store (t, y) values
sol(1, :) = [t, yl; % Store initial condition
% RK4 Loop
for i = 1:n

k1l = dt * f(t, y);

k2 = dt * f(t + dt/2, y + k1/2);

k3 = dt * f(t + dt/2, y + k2/2);

kd = dt * f(t + dt, y + k3);

y =y + (k1 + 2xk2 + 2xk3 + k4) / 6; % Update solution
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t =t + dt;
sol(i+1, :) = [t, yl;
end

% Plot the numerical solution
plot(sol(:,1), sol(:,2), ‘-o’)
xlabel(‘t’)

ylabel(‘y’)

title(‘RK4 Method Solution’)
grid on

Output

% Increment time
% Store new (t, y)

0 0.5

2.5

Practical No. 13

Aim

To find the root of an equation using MATLAB with various numerical techniques.

Problem

Approximate the first derivative of f(x) = sin(x) at xy = I using the forward difference

method with two different step sizes.

148

4




Practical No. 14 Numerical Analysis

Algorithm

Stepl: Select a step size h.

Step2: Evaluate first derivative using the formula
Step3: Error is obtained as the difference between the actual derivative and the approxi-
mated derivative given as | Actual f'(x¢) — Approzimate f'(zo) |.

fzoth)—f(zo)
. :

Program

% Forward Difference Approximation with h = 0.01

h = 0.01;

f 0(x) sin(x); % Function

x0 = pi/4; % Point of differentiation

ForwardDerivative_1 = (f(x0 + h) - £(x0)) / h; % Forward difference formula
Error_1 = abs(ForwardDerivative_1 - cos(x0)); % Error calculation

% Display results for h = 0.01

fprintf(‘For h = 0.01:\n’);

fprintf (‘Forward Derivative: 7%.6f\n’, ForwardDerivative_1);
fprintf (‘Error: %.6f\n\n’, Error_1);

% Forward Difference Approximation with h = 0.001

h = 0.001;

ForwardDerivative_2 = (f(x0 + h) - £(x0)) / h; % Forward difference formula
Error_2 = abs(ForwardDerivative_2 - cos(x0)); % Error calculation

% Display results for h = 0.001
fprintf (‘For h = 0.001:\n’);

fprintf (‘Forward Derivative: %.6f\n’, ForwardDerivative_2);
fprintf (‘Error: ¥%.6f\n’, Error_2);

Output

ForwardDerivative = 0.7036
Error = 0.0035

ForwardDerivative = 0.7068
Error = 3.5367e-04

Practical No. 14
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Aim

To find the root of an equation using MATLAB with various numerical techniques.

Problem

Approximate the first derivative of f(z) = sin(x) at 2o = § using the backward difference
method with two different step sizes.

Algorithm

Stepl: Select a step size h.

Step2: Evaluate first derivative using the formula £
Step3: Error is obtained as the difference between the actual derlvatlve and the approxi-
mated derivative given as | Actual f'(x¢) — Approzimatef'(zy) |.

x0)—f(z0— h)
h

Program

% Backward Difference Approximation with h = 0.01

= 0.01;

= @(x) sin(x); % Function

=pi / 4; % Point of differentiation
BackwardDerivative_1 = (f(x0) - £f(x0 - h)) / h; % Backward difference formula
Error_1 = abs(BackwardDerivative_1 - cos(x0)); % Error calculation

% Display results for h = 0.01

fprintf(‘For h = 0.01:\n’);

fprintf (‘Backward Derivative: %.6f\n’, BackwardDerivative_1);
fprintf (‘Error: %.6f\n\n’, Error_1);

% Backward Difference Approximation with h = 0.001

h = 0.001;

BackwardDerivative_2 = (f(x0) - f(xO0 - h)) / h; % Backward difference formula
Error_2 = abs(BackwardDerivative_2 - cos(x0)); % Error calculation

% Display results for h = 0.001

fprintf(‘For h = 0.001:\n’);

fprintf (‘Backward Derivative: %.6f\n’, BackwardDerivative_2);
fprintf (‘Error: %.6f\n’, Error_2);
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Output

BackwardDerivative = 0.7106
Error = 0.0035
BackwardDerivative = 0.7075

Error = 3.5344e-04

Practical No. 15

Aim

To find the root of an equation using and MATLAB with various numerical techniques.

Problem

Approximate the first derivative of f(z) = sin(r) at zo = 7 using the central difference
method with two different step sizes and make a comparative conclusion as compare to

forward and backward difference methods.

Algorithm

Stepl: Select a step size h.

Step2: Evaluate first derivative using the formula W

Step3: Error is obtained as the difference between the actual derivative and the approxi-
mated derivative given as | Actual f'(z¢) — Approzimatef'(zy) |.

Program

% Central Difference Approximation with h = 0.01
= 0.01,;
f = 0(x) sin(x); % Function
=pi / 4; % Point of differentiation
CentralDerivative_1 = (f(x0 + h) - £f(x0 - h)) / (2 * h); % Central difference for
Error_1 = abs(CentralDerivative_1 - cos(x0)); % Error calculation

% Display results for h = 0.01

fprintf(‘For h = 0.01:\n’);

fprintf(‘Central Derivative: %.6f\n’, CentralDerivative_1);
fprintf (‘Error: %.6f\n\n’, Error_1);
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% Central Difference Approximation with h = 0.001

h = 0.001;

CentralDerivative_2 = (f(x0 + h) - £f(x0 - h)) / (2 * h); % Central difference formula
Error_2 = abs(CentralDerivative_2 - cos(x0)); % Error calculation

% Display results for h = 0.001

fprintf(‘For h = 0.001:\n’);

fprintf(‘Central Derivative: %.6f\n’, CentralDerivative_2);
fprintf (‘Error: %.6f\n’, Error_2);

Output

CentralDerivative = 0.7071
Error = 1.1785e-05

CentralDerivative = 0.7071
Error = 1.1785e-07

Conclusion

Note that by comparing the error in forward difference, backward difference and central
difference, we can see that the error in central difference is least. Therefore, it can be
concluded that the central difference is most accurate for this problem.

Practical No. 16

Aim

To find the root of an equation using and MATLAB with various numerical techniques.

Problem

s

Approximate the second derivative of f(z) = sin(r) at 2o = 7 using the finite difference
approximation with two different step sizes.

Algorithm

Stepl: Choose a step size h.

Step2: Evaluate the second derivative using the formula L&t =2/(@0)+/(xo=h)

2h
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Step3: Error is obtained as the difference between the actual derivative and the approxi-
mated derivative given as | Actual f'(x¢) — Approzimatef'(zo) |.

Program

% Finite Difference for Second Derivative with h = 0.01

h = 0.01;

f 0(x) sin(x); % Function

x0 = pi / 4; % Point of differentiation

SecondDerivative_1 = (£(x0 + h) - 2*%f(x0) + £(x0 - h)) / (h * h); % Second deriva
Error_1 = abs(SecondDerivative_1 + sin(x0)); % Error calculation (exact second de

% Display results for h = 0.01

fprintf(‘For h = 0.01:\n’);

fprintf(‘Second Derivative: %.6f\n’, SecondDerivative_1);
fprintf (‘Error: %.6f\n\n’, Error_1);

% Finite Difference for Second Derivative with h = 0.001

h = 0.001;

SecondDerivative_2 = (f(x0 + h) - 2xf(x0) + £f(x0 - h)) / (h * h); % Second deriva
Error_2 = abs(SecondDerivative_2 + sin(x0)); % Error calculation

% Display results for h = 0.001

fprintf(‘For h = 0.001:\n’);

fprintf(‘Second Derivative: %.6f\n’, SecondDerivative_2);
fprintf (‘Error: %.6f\n’, Error_2);

Output
SecondDerivative = - 0.7071
Error = 5.8925e-06

SecondDerivative = -0.7071
Error = 5.9011e-08

Conclusion

Note that by comparing the error it can be seen that the error will small step size is least.

Practical No. 17
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Aim

To find the root of an equation using and MATLAB with various numerical techniques.

Problem

Interpolate the function f(x) = sin(z) at x = 1.5 given points (1,0.8415) and (2,0.9093)
using MATLAB in-build function interpl.

Working rule of interpl

The function interpl(x, y, x6) returns interpolated values of a 1-D function at specific point
x0 using linear interpolation. The vector x contains the sample points, and y contains the
corresponding values, y(x).

Program

x = [1, 2];

y = [0.8415, 0.9093];
x0 = 1.5;

y_interp = interpl(x, y, x0);
fprintf (‘The interpolated value at x = %.2f is y = %.4f\n’, x0, y_interp);

Output
SecondDerivative = - 0.7071
Error = 5.8925e-06

SecondDerivative = -0.7071
Error = 5.9011e-08

Conclusion

Note that by comparing the error it can be seen that the error will small step size is least.

Practical No. 18

Aim
To find the root of an equation using and MATLAB with various numerical techniques.
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Problem

_

Interpolate the function f(x) = sin(x) at z = 7 using cubic spline interpolating polynomial
for given points (0,0), (5,1) and (7,0).

Algorithm

Stepl: The function ’spline(x,y)’ returns coefficients of the cubic spline polynomial.
Step2: 'ppval’ takes the input polynomial coefficients as first argument and the query
point as the second argument and returns the interpolated value as the query point.

Program
x = [0 pi/2 pil;
y = [0 1 0];

spline_coeffs = spline(x, y);

x_interp = pi/4;

y_interp = ppval(spline_coeffs, x_interp);
y_interp

error = abs(sin(x_interp) - y_interp);

Output

y_interp = 0.7500
error = 0.0429

Practical No. 19

Aim

To find the root of an equation using and MATLAB with various numerical techniques.

Problem

Compare the interpolating results obtained using linear and cubic spline interpolation for
the function f(z) = sin(z) at x = § for given points (0,0), (3,1) and (7, 0).

Algorithm

Stepl: Evaluate the linear interpoling value of f(x) at the query point using ‘interpl’.
The vector x contains the sample points , and y contains the corresponding values, y(z).
Step2:
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e Obtain the cubic interpolation using the function ‘spline(x,y)’ that returns the coef-
ficients of the cubic spline polynomial.

e ‘ppval’ takes the input polynomial coefficients as first argument and the query points
as the second argument and returns the interpolated value as the query point.

Step3: Compare the results by obtaining the errors.

Program

x = [0 pi/2 pil; ’% Sample points
y = [0 1 0]; % Function values at sample points
x_interp = pi/4; % Query point

% Linear interpolation
y_linear = interpl(x, y, x_interp);

% Spline interpolation
spline_coeffs = spline(x, y);
y_spline = ppval(spline_coeffs, x_interp);

% Errors
error_linear
error_spline

abs(sin(x_interp) - y_linear);
abs(sin(x_interp) - y_spline);

% Display results

fprintf(‘Linear Interpolation Value: %.6f\n’, y_linear);
fprintf(‘Spline Interpolation Value: %.6f\n’, y_spline);
fprintf (‘Error in Linear Interpolation: %.6f\n’, error_linear);
fprintf (‘Error in Spline Interpolation: %.6f\n’, error_spline);

Output

y_linear = 0.9549
y_spline = 0.7500
error_linear = 0.2478
error_spline = 0.0429

Conclusion

Note that the error with cubic spline interpolating polynomial is less.
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Practical No. 20

Aim

To find the root of an equation using and MATLAB with various numerical techniques.

Problem

Write a program for solving integration by using trapezoidal rule taking h = 0.5, 0.25,
0.125, and also find error.
/1 dzx
0 1 + 513'2

Algorithm

To solve this problem we will create a function file that will take all the inputs from the
user.

e Input the function, interval and step size: The user is prompted to input the
function as a string, which is then converted to a function handle.
The user is asked to input the lower (a) and upper (b) limits of integration.
The step sizes h is defined in an array.

e Exact integral value: The user is asked to input the exact integral value if known.
If left empty, exact_value is set to NaN.

e Trapezoidal rule calculation: For each step size, the number of steps n is calcu-
lated.
The sum for the trapezoidal rule is initialized and calculated in a loop.
The boundary values are added, and the final integral value is computed.
If the exact integral value is known, the error is calculated and printed along with the
integral value. If not, only the integral value is printed.

Program

function trapezoidal_integration()

% Ask the user to input the function to integrate

func_str = input(’Enter the function to integrate in terms of x: ’, ‘s’);
f = str2func([‘@(x) ’, func_str]l);

% Ask the user to input the interval [a, b]
a = input(‘Enter the lower limit of integration (a): ’);
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b = input(‘Enter the upper limit of integration (b): ’);

% Step size
h = input(‘Enter the step size: ’);

% Exact integral value (if known, for error calculation)
exact_value_str = input(‘Enter the exact integral value (if known), otherwise leave emp
if isempty(exact_value_str)
exact_value = NaN;
else
exact_value = str2double(exact_value_str);
end

% Number of steps
n=(b-a) / h;

% Initialize sum
sum = O;

% Trapezoidal rule calculation
for i = 1:n-1

Xx_1i=a+ i % h;
sum + f(x_i);

sum
end

% Add the boundary values
integral_value = h * (0.5 * f(a) + sum + 0.5 * £(b));

% Calculate error if exact value is known
if “isnan(exact_value)
error = abs(exact_value - integral_value);
fprintf(‘Integral with h = %.3f is approximately %.5f with an error of %.5e\n’, h,
else
fprintf(‘Integral with h = %.3f is approximately %.5f\n’, h, integral_value);
end
end

Output

To call this function from the MATLAB command window, simply type:
trapezoidal_integration()

Enter the function to integrate in terms of x: (1+x72)°(-1)

Enter the lower limit of integration (a): O

Enter the upper limit of integration (b): 1
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Enter the step size: [0.5, 0.25, 0.125]
Enter the exact integral value (if known), otherwise leave empty: 0.78539

Integral with h
Integral with h
Integral with h

0.500 is approximately 0.77500 with an error of 1.03900e-02
0.250 is approximately 0.78279 with an error of 2.59588e-03
0.125 is approximately 0.78475 with an error of 6.42876e-04
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Chapter 6

Laplace and Fourier Transformation

Practical No. 1

Aim

Compute the Laplace transform of basic function with the help of MATLAB.

Problem

Compute the Laplace transform of function

f(t) = t%e*. (6.1)

Theory

The Laplace transform of the function f(t) is given by

F(s) = /O T e ()t (6.2)

Algorithm

Stepl: Create a symbolic variable t and s;

Step2: Input the function f(t);

Step3: Use Laplace function in MATLAB to compute the Laplace transform F(s);
Step4: Display the result.

Program

The following MATLAB script implements the algorithm.
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syms t s

f =1t72 x exp(3%t);

F = laplace(f, t, s);

fprintf (‘The Laplace transform is given by, F(s)=¥s\n’, F)

Output

The output of the program is as follows:

The Laplace transform is given by, F(s)=2/(s - 3)73

Exercise Problem

Find the Laplace transform of f(t) = t3¢ .

Practical No. 2

Aim

Verify the linearity property of the Laplace transform with the help of MATLAB.

Problem

Verify the linearity property of the Laplace transform using f(t) = ¢, g(t) = exp(—t), a = 2
and b = 3.

Theory

Let F(s) and G(s) be the Laplace transform of f(t) and g(t), respectively. The linearity
property is given by L(af(t) + bg(t)) = aF(s) + bG(s).

Algorithm

Stepl: Create a function file prob_2 veri fy_laplace linearity;

Step2: Prompt the user to enter functions f(t) and g(t) and constants a and b;
Step3: Convert input functions to symbolic expressions;

Step4: Define symbolic variables;

Step5: Compute Laplace transforms of f(t) and g(t);

Step6: Compute the linear combination of individual Laplace transforms;

Step7: Compute the Laplace transform of the combined function (a*f(t) + b*g(t));
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Step8: Display the results;
Step9: In the command window enter prob_2_verify_laplace_linearity;
Stepl10: Now enter the functions and constants.

Program

The following MATLAB script implements the algorithm.

function prob_2_verify_laplace_linearity()
f_str = input(‘Enter the function f(t) in terms of t: ’, ‘s’);
g_str = input(‘Enter the function g(t) in terms of t: ’, )

a = input(‘Enter the constant a: ’);
b = input(‘Enter the constant b: ’);
f_sym = str2sym(f_str);

g_sym = str2sym(g_str);

syms t s

F_s = laplace(f_sym, t, s);

G_s = laplace(g_sym, t, s);

LHS = a * F_s + b * G_s;

combined_function = a * f_sym + b * g_sym;
RHS = laplace(combined_function, t, s);

disp(‘Laplace Transform of a*xf(t) + bxg(t):’)

disp(RHS)

disp(‘a * Laplace Transform of f(t) + b * Laplace Transform of g(t):’)
disp(LHS)

% Verify if LHS equals RHS
if simplify(LHS - RHS) ==
disp(‘The linearity property of the Laplace transform is verified.’)
else
disp(‘The linearity property of the Laplace transform does not hold.’)
end
end

Output

The output of the program is as follows:

>> prob_2_verify_laplace_linearity()

163



Laplace and Fourier Transformation Practical No. 3

>> Enter the function f(t) in terms of t: t

>> Enter the function g(t) in terms of t: exp(-t)
>> Enter the constant a: 2

>> Enter the constant b: 3

>> Laplace Transform of axf(t) + bxg(t):

3/(s + 1) + 2/s72

>> a * Laplace Transform of f(t) + b * Laplace Transform of g(t):
3/(s + 1) + 2/s72

>> The linearity property of the Laplace transform is verified.

Exercise Problem

Verify the linearity property of the Laplace transform using f(t) = cos(t) and g(t) = e*

with a =4,b = —1.

Practical No. 3

Aim

Implement the first translation theorem in MATLAB.

Problem

Find the Laplace transform of f(t) = e*sin(3t) using the first translation theorem.

Theory

The first translation theorem is used when the function is a product of two functions with
one of the factors being an exponential function. Then the Laplace transform is given as

L(e f(t)) = F(s — a). (6.3)

Algorithm

Stepl: Create a symbolic variable t and s;

Step2: Input the function e f(t);

Step3: Use Laplace function in MATLAB to compute the Laplace transform F(s — a);
Step4: Display the result.
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Program

The following MATLAB script implements the algorithm.

syms t s

f = exp(2 * t) * sin(3 * t);

F = laplace(f, t, s);

fprintf (‘The Laplace transform is given by, F(s-a)=Ys\n’, F)

Output

The output of the program is as follows:

The Laplace transform is given by, F(s-a)=3/((s - 2)"2 + 9)

Exercise Problem

Find the Laplace transform of f(t) = e*cos(4t) using the first translation theorem.

Practical No. 4

Aim

Compute Laplace transform using partial fractions with the help of MATLAB.

Problem

Compute the Laplace transform of f(t) = te?* and simplify the result using partial fractions.

Theory

The Laplace transform by partial fraction technique uses partial fraction expansion to split
a complicated fraction into forms that are in the Laplace transform.

Algorithm

Stepl: Create a symbolic variable ¢ and s;

Step2: Input the function f(t);

Step3: Compute the Laplace transform of f(t);

Step4: Use partfrac function for partial fraction decomposition of the result;
Step4: Display the decomposed result.
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Program

The following MATLAB script implements the algorithm.

syms t s

f=1t*expl4d *x t);

F = laplace(f, t, s);

F = partfrac(F); ’% Using partial fraction decomposition

fprintf(‘The Laplace transform using partial practions is given by:%s\n’, F)

Output

The output of the program is as follows:

The Laplace transform using partial practions is given by:1/(s - 4)°2

Exercise Problem

Compute the Laplace transform of f(t) = te™3' and simplify the result using partial frac-
tions.

Practical No. 5

Aim

Apply the change of scale property with the help of MATLAB.

Problem

Find the Laplace transform of f(t) = cos(5t) using the change of scale property.

Theory

If the Laplace transform of f(¢) is F'(s), then the Laplace transform of f(at) is (1/a)F(s/a).

Algorithm

Stepl: Creates a symbolic variable ¢ and s;
Step2: Input the variable a;
Step3: Input the function f(t);
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Step4: Compute the Laplace transform of f(¢);
Step5: Apply the change of scale property by substituting s with 2 and multiplying by %;
Stepb5: Display the result to verify the change of scale.

Program

The following MATLAB script implements the algorithm.

syms t s

a =5; % Scaling factor
f = cos(t);

F = laplace(f, t, s);

G (1/a) * subs(F, s, s/a);
fprintf (‘The Laplace transform using the change of scale property is given by:
hs\n’, G)

Output

The output of the program is as follows:

The Laplace transform using the change of scale property is given by:
s/(25%(s72/25 + 1))

Exercise Problem

Find the Laplace transform of f(¢) = sin(6t) using the change of scale property.

Practical No. 6

Aim

Calculate the Laplace transform of a derivative with the help of MATLAB.

Problem

For f(t) = t3, find the Laplace transform of its first derivative.
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Theory

The Laplace transform of the first derivative is a fundamental property in transforming and
solving differential equations. The Laplace transform of the function f’(¢) is given by:

F(s) = / T et Pt (6.4)

0

Algorithm

Stepl: Create a symbolic variable ¢ and s;

Step2: Input the function f(t);

Step3: Differentiate f(¢) with respect to t;

Step4: Apply the Laplace transform to the derivative;
Step5: Display the transformed result.

Program
The following MATLAB script implements the algorithm.

syms t s

f =1t73;

F_prime = laplace(diff(f, t), t, s);

fprintf (‘The Laplace transform of first derivative is given by:%s\n’, F_prime)

Output

The output of the program is as follows:

The Laplace transform of first derivative is given by: 6/s73

Exercise Problem

For f(t) = t?, find the Laplace transform of its first and second derivatives.

Practical No. 7

Aim
Implementation of initial and final value theorem with the help of MATLAB.
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Problem

10

Use the initial and final value theorems to find the initial and final values of F'(s) = 77 —.

Theory

The initial value theorem and the final value theorem are Laplace transform theorems that
are used to determine the behavior of a function as time approaches zero or infinity.

Algorithm

Stepl: Create a symbolic variable s;

Step2: Input the function F(s);

Step3: Apply the initial value theorem on F'(s);
Step4: Apply the final value theorem on F(s);
Step5: Display the initial and final values.

Program

The following MATLAB script implements the algorithm.

syms s
F=10/ (872 +5 *x s + 6);

init_val = limit(s * F, s, inf);
final_val = limit(s * F, s, 0);

Output

The output of the program is as follows:

>> fprintf(‘The initial value of F(s) is given by:%s\n’, init_val)
The initial value of F(s) is given by:0

>> fprintf(‘The final value of F(s) is given by:%s\n’, final_val)
The final value of F(s) is given by:0

Exercise Problem

5s+3

Use the initial and final value theorems to find the initial and final values of F'(s) = 7 "=.

Practical No. 8

169



Laplace and Fourier Transformation Practical No. 9

Aim

Laplace transform of an integral with the help of MATLAB.

Problem

Find the Laplace transform of f(t) = [} €*" dr.

Theory

The Laplace transform of the integral of a function f(¢) is defined by the integral F(s) =
Jo e f(t)dt, s> 0.

Algorithm

Stepl: Create a symbolic variable ¢ and s.

Step2: Define the integrand g(7) = €7;

Step3: Compute the integral of ¢g(7) from 0 to ¢, which results in f(t);
Step4: Apply the Laplace transform to f(¢) with respect tot, giving F(s);
Stepb: Display the final Laplace transform result.

Program
The following MATLAB script implements the algorithm.

syms t tau s

% Define the integrand function g() = e~ (2)
g = exp(2 * tau);

% Compute the integral from O to t to find f(t)
f = int(g, tau, 0, t);

% Find the Laplace transform of f(t)
F = laplace(f, t, s);

% Display the result
disp(‘Laplace Transform of f(t):’)
disp(F)

Output

The output of the program is as follows:

Laplace Transform of f(t):
1/(2x(s - 2)) - 1/(2%*s)
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Exercise Problem

Find the Laplace transform of f(t) = f(f cos(37) dr.

Practical No. 9

Aim

Laplace transform of periodic functions with the help of MATLAB.

Problem

Determine the Laplace transform of a periodic function f(t) = sin(t) with period T = 27.

Theory

The Laplace transform of a periodic function provides an efficient way to analyze periodic
signals in the frequency domain. For a function f(t) with period T, the Laplace transform
can be computed using a specific formula that takes the periodicity into account.

L((t)) = Jo S et (6.5)

1 —esT

Algorithm

Stepl: Create a symbolic variable ¢ and s;

Step2: Define the function f(t) = sin(t);

Step3: Define the period T' = 2 % pi;

Step4: Compute the integral of f(¢) over one period [0, T7;

Step5: Apply the Laplace transform formula for periodic functions.
Step6: Display the result.

Program

The following MATLAB script implements the algorithm.

syms t s

% Define the function f(t) = sin(t)
f = sin(t);

% Define the period T = 2 * pi

T =2 % pi;
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% Compute the integral of f(t) * exp(-s * t) over one period [0, T]
integral_result = int(f * exp(-s * t), t, 0, T);

% Apply the Laplace transform formula for periodic functions

F = integral_result / (1 - exp(-s * T));

% Display the result

disp(‘Laplace Transform of the periodic function f(t):’)
disp(F)

Output

The output of the program is as follows:

Laplace Transform of the periodic function f(t):
1/(s”2 + 1)

Exercise Problem

Determine the Laplace transform of a periodic function f(¢) = cos(t) with period T' = 7.

Practical No. 10

Aim

Inverse Laplace transform with convolution theorem with the help of MATLAB.

Problem

Find the inverse Laplace transform of F(s) = using convolution theorem.

_1
s(s+2)

Theory

The inverse Laplace transform of F(s) is given by f(t) = L~Y(F(s)).

Algorithm

Stepl: Create a symbolic variable ¢ and s;

Step2: Define the function F(s);

Step3: Use MATLABES ilaplace function to compute the inverse Laplace transform;
Step4: Display the result.
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Program

The following MATLAB script implements the algorithm.

syms t s

F=1/(sx* (s + 2));

f = ilaplace(F, s, t);

fprintf (‘The inverse Laplace transform is given by:%s\n’, f)

Output

The output of the program is as follows:

The inverse Laplace transform is given by:1/2 - exp(-2xt)/2

Exercise Problem

Find the inverse Laplace transform of F(s) = m using convolution theorem.

Practical No. 11

Aim

Compute inverse Laplace transform with Heaviside expansion with the help of MATLAB.

Problem

s+1

75 with Heaviside expansion.

Compute the inverse Laplace transform of F'(s) =

Theory

The inverse Laplace transform is used to convert functions from the s-domain (frequency do-
main) back to the t-domain (time domain). When computing the inverse Laplace transform
of a rational function we often use the Heaviside expansion method (also known as partial
fraction decomposition). This approach decomposes the function into simpler fractions,
which can be individually transformed back to the time domain using standard inverse
Laplace transforms.
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Algorithm

Stepl: Create a symbolic variable ¢ and s;
Step2: Define the function F'(s);

Step3: Perform partial fraction decomposition;
Step4: Compute the inverse Laplace transform;
Step5: Display the result.

Program

The following MATLAB script implements the algorithm.

syms s t

F=(s+1)/ (872 + 4xs + b);
F_decomposed = partfrac(F);

f_t = ilaplace(F_decomposed, s, t);
disp(‘Inverse Laplace Transform of F(s):’)
disp(f_t)

Output

The output of the program is as follows:

Inverse Laplace Transform of F(s):
exp(-2*t)*(cos(t) - sin(t))

Exercise Problem

s+2
524+25+5

Compute the inverse Laplace transform of F(s) = with Heaviside expansion.

Practical No. 12

Aim

Solve a differential equation using Laplace transform in MATLAB.

Problem

Solve the following differential equation using Laplace transform:
Y +3y +2y=0 (6.6)
with initial conditions 3(0) = 1,7 (0) = 0.
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Theory

Using the Laplace transform to solve differential equations is an effective method to convert
differential equations in the time domain into algebraic equations in the frequency domain
(s-domain). Once transformed, the differential equation becomes an algebraic equation in
terms of s and can be solved for Y(s), the Laplace transform of y(t). The solution y(t) is
then found by applying the inverse Laplace transform.

Algorithm

Stepl: Create a symbolic variable s, y(t) and Y

Step2: Define the differential equation;

Step3: Apply the Laplace transform to both sides of the equation;
Step4: Solve for Y (s);

Step5: Find the inverse Laplace transform to get y(t);

Step6: Display the solution.

Program

The following MATLAB script implements the algorithm.

syms y(t) Y s

Dy = diff(y, t);

D2y = diff(y, t, 2);

eqn = D2y + 3*Dy + 2%y == 0;

LEgn = laplace(eqn, t, s);

LEqn = subs(LEqn, [laplace(y(t), t, s), y(0), subs(Dy, t, 001, [Y, 1, 01);
Y_s solve(LEgn, Y);

y_t = ilaplace(Y_s, s, t);

disp(‘Solution y(t) of the differential equation:’)

disp(y_t)

Output

The output of the program is as follows:

Solution y(t) of the differential equation:
2xexp(-t) - exp(-2*t)

Exercise Problem
Solve the following differential equation using Laplace transform:
y' + 2y = et (6.7)
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/

with initial conditions y(0) = 0,y (0) = 1.

Practical No. 13

Aim

Solve simultaneous differential equations with Laplace transform in MATLAB.

Problem
Solve the following simultaneous differential equations using Laplace transform:
Y +2=0 2z 4+22+4+y=0 (6.8)

with initial conditions y(0) = 0, z(0) = 1.

Theory

The Laplace transform is particularly useful to solve systems of linear differential equations
by transforming each equation from the time domain to the s-domain, where differentiation
becomes algebraic. For a system of differential equations, each equation can be transformed
individually, then solved simultaneously for the Laplace transforms of the unknown func-
tions. Once the transformed equations are solved, we apply the inverse Laplace transform
to retrieve the original functions.

Algorithm

Stepl: Create a symbolic variable y(t), z(t), Y and Z;

Step2: Define the differential equations;

Step3: Apply Laplace transform to both equations;

Step4: Solve for Y(s) and Z(s);

Step5: Find the inverse Laplace transform to get y(t) and z(t);
Step6: Display the result.

Program
The following MATLAB script implements the algorithm.

syms y(t) z(t) Y Z s
Dy = diff(y, t);
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Dz = diff(z, t);

eqnl = Dy + z == 0;

eqn2 = Dz + 2%z + y == 0;
LEgnl = laplace(eqnl, t, s);

LEqn2 = laplace(eqn2, t, s);
LEgnl = subs(LEqni, [laplace(y(t), t, s), laplace(z(t), t, s), y(0), z(0)],
[Y, Z, O’ 1]);

LEgn2 = subs(LEgn2, [laplace(y(t), t, s), laplace(z(t), t, s), y(0), z(0)],
ly, z, 0, 11);

solutions = solve([LEgnl, LEqn2], [Y, Z1);
Y_s = solutions.Y;

Z_s solutions.Z;

y_t ilaplace(Y_s, s, t);

z_t = ilaplace(Z_s, s, t);>>
disp(‘Solution y(t):’)

disp(y_t)

disp(‘Solution z(t):’)

disp(z_t)

Output

The output of the program is as follows:

Solution y(t):

-(27(1/2)*exp(-t)*sinh (2" (1/2)*t)) /2

Solution z(t):

exp(-t)*(cosh(27(1/2)*t) - (27(1/2)*sinh(2"(1/2)*t))/2)

Exercise Problem

Solve the following simultaneous differential equations using Laplace transform:
y=y+z 2=2-z (6.9)

with initial conditions y(0) = 1, 2(0) = —1.

Practical No. 14

Aim
Solve partial differential equations with Laplace transform in MATLAB.
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Problem
Solve the partial differential equations using Laplace transform:

U = ktgy, u(x,0) =sinx. (6.10)

Theory

The Laplace transform in the time domain is often applied to PDEs with respect to ¢ to
simplify time-dependent terms. This process converts derivatives in ¢ into algebraic terms
in s, allowing the PDE to be reduced to an ODE in the spatial variable .

Algorithm

Stepl: Set up the symbolic variables z, t, s, k, and U(x);
Step2: Define the initial condition;

Step3: Laplace transform of u; with respect to t;

Step4: Laplace transform of wu,, with respect to x;
Step5: Solve the resulting ODE in z for U(x, s);

Step6: Simplify U(x, s) if possible;

Step7: Take the inverse Laplace transform to get u(x,t);
Step8: Display the final solution.

Program

The following MATLAB script implements the algorithm.

syms x t s k U(x)
u0 = sin(x);
PDE = s*U - u0 == kxdiff (U, x, 2);

U_sol = dsolve(PDE);

U_sol = simplify(U_sol);
u_sol = ilaplace(U_sol, s, t);
u_sol = simplify(u_sol);

disp(‘Simplified Solution u(x, t):’)
disp(u_sol)

Output

The output of the program is as follows:

Simplified Solution u(x, t):
C3xilaplace(exp((x*(k*s)~(1/2))/k), s, t)
+ C4xilaplace(exp(-(x*x(k*s)~(1/2))/k), s, t)
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+ (sin(x)*ilaplace(exp((x*((k*s)~(1/2)

- k"(1/2)*%s”(1/2)))/k)/(k + s), s, t))/2

+ (sin(x)*ilaplace(exp (- (x*((kx*s)~(1/2)

- k" (1/2)*xs”(1/2)))/®)/(k + s), s, t))/2

+ (k~(1/2)*cos(x)*ilaplace (exp ((x*((kxs)~(1/2)

- k™ (1/2)*s7(1/2)))/k)/ (s~ (1/2)*(k + s)), s, t))/2
- (k" (1/2)*cos(x)*ilaplace (exp (- (x*((k*s)~(1/2)

- k" (1/2)*%s7(1/2)))/k) /(s (1/2)*(k + s8)), s, t))/2

Exercise Problem

Solve the partial differential equations using Laplace transform:

Ut = Mgy, u(z,0) =1z sinx (6.11)

Practical No. 15

Aim

Visualize the differential equation of the circuit with the help of MATLAB.

Problem

Visualize the following circuit’s differential equation using Laplace transform:

V(t) = RI(t) + Ld;—f) + % / I()dt. (6.12)

Theory

The Laplace transform is extremely useful in circuit analysis because it allows you to convert
the differential equations governing the circuit (Kirchhoff’s laws) into algebraic equations.
Once the equations are in the s—domain, theyre easier to solve, and the current I(s) can be
found as an algebraic function. Applying the inverse Laplace transform to I(s) then gives
the current in the time domain (¢).

Algorithm

Stepl: Set up the symbolic variables ¢ and s;

Step2: Define numerical values for R, L, and C

Step3: Define the input voltage as a step function in the Laplace domain V' (s);

Step4: Define the equation of the RLC circuit in the s-domain and solve for I(s) by
rearranging the equation;
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Step5: Take the inverse Laplace transform to find I(t);
Step6: Display the time-domain current I(t);
Step7: Plot the current response over time.

Program
The following MATLAB script implements the algorithm.

>> syms t s

>> R = 1; % Resistance in ohms

>> L = 1; % Inductance in henries

>> C = 0.5; % Capacitance in farads
>>V.s =1/ s;

> I s=V.s/ RBR+Lx*xs+1/ (Cx*xs));
>> I_t = ilaplace(I_s, s, t);

>> disp(‘Current I(t) in the time domain:’)

>> disp(I_t)

>> fplot(I_t, [0, 10])

>> title(‘Current Response I(t) in an RLC Circuit with Step Input Voltage’)
>> xlabel(‘Time (t)’)

>> ylabel(‘Current I(t)’)

>> grid on

Output

The output of the program is as follows:

Current I(t) in the time domain:
(2*7~(1/2)*xexp(-t/2)*sin((7~(1/2)*t) /2)) /7

The output is also given by the figure 6.1.

Exercise Problem
Solve the partial differential equations using Laplace transform:

up = 4y, u(z,0) = zsinx. (6.13)

Practical No. 16
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Current Response I(t) in an RLC Circuit with Step Input Voltage
T T T I

/7 N T
/

Current I(t)

Figure 6.1: Current Response I(t) in an RLC Circuit with Step Input Voltage
Aim

Compute the Fourier transform of basic function with the help of MATLAB.

Problem

Find the Fourier transform of f(t) = e2I.

Theory

The Fourier transform of the function f(t) is given by:

Flw) = /_ et ()t (6.14)

Algorithm

Stepl: Create a symbolic variable ¢ and w;

Step2: Input the function f(t);

Step3: Use MATLAB'’s fourier function to compute the Fourier transform F(w);
Step4: Display the result.
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Program

The following MATLAB script implements the algorithm.

>> syms t w
>> f = exp(-2 * abs(t));
>> F = fourier(f, t, w);

>> fprintf(‘The Fourier transform of f(t) is given by:%s\n’, F)

Output

The output of the program is as follows:

The Fourier transform of f(t) is given by:4/(w"2 + 4)

Exercise Problem

Find the Fourier transform of f(t) = e =3I,

Practical No. 17

Aim

Verify the linearity property of the Fourier transform with the help of MATLAB.

Problem

Verify the linearity property for f(t) = sin(¢) and g(t) = cos(t), with constants a and b.

Theory

Let F(w) and G(w) be the Fourier transform of f(t) and g(t), respectively. The linearity

property is given by F(af(t) + bg(t)) = aF(w) 4+ bG(w).

Algorithm

Stepl: Set up the symbolic variables ¢ and w;
Step2: Input the function f(t);

Step3: Compute Fourier transform of f(t);
Step4: Input the function g(t);
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Step5: Compute Fourier transform of g(t);

Step6: Compute aF(w) + bG(w);

Step7: Compute Fourier transform of af(t) + bg(¢);
Step8: Display all the Fourier transforms;

Step9: Verify the linearity property.

Program

The following MATLAB script implements the algorithm.

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

syms t wab

f = sin(t);

F = fourier(f, t, w);

g = cos(t);

G = fourier(g, t, w);

S = axF + bx*G;

T = fourier(a *x f + b *x g, t, w);

fprintf (‘The Fourier transform of f(t) is given by F(w)=ls\n’, F)

fprintf (‘The Fourier transform of g(t) is given by G(w)=%s\n’, G)
fprintf (‘aF(s)+bG(s)=Ys\n’, S)

fprintf (‘The Fourier transform of af(t)+bg(t) is given by:%s\n’, T)
if T ==

disp(‘Linearity property is satisfied’)

else

disp(‘Linearity property is not satisfied’)

end

Output

The output of the program is as follows:

The Fourier transform of f(t) is given by,
F(w)=-pix(dirac(w - 1) - dirac(w + 1))*1i

The Fourier transform of g(t) is given by,
G(w)=pix(dirac(w - 1) + dirac(w + 1))
aF(s)+bG(s)=b*pi*(dirac(w - 1) + dirac(w + 1))

- axpi*(dirac(w - 1) - dirac(w + 1))*1i

The Fourier transform of af(t)+bg(t) is given by:

b*pi*(dirac(w - 1) + dirac(w + 1)) - a*pix(dirac(w - 1) - dirac(w + 1))*1i

Linearity property is satisfied

Exercise Problem

Verify the linearity property for f(t) = ¢ and g(t) = e™*, with constant a = 4 and b = —1.
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Practical No. 18

Aim

Practical No. 18

Compute the Fourier cosine transform problem with the help of MATLAB.

Problem

Find the Fourier cosine transform of f(t) =e™".

Theory

The Fourier cosine transform of the function f(¢) is given by:

F(w) = /OOO cos(wt) f(t)dt.

Algorithm

Stepl:
Step2:
Step3:
Step4:
Step5:
Step6:

Create a symbolic variable ¢ and w;

Input the function f(¢);

Compute the Fourier cosine transform of f(¢) manually;
Display the Fourier cosine transform;

(6.15)

Convert the Fourier cosine transform to a MATLAB function for plotting;
Plot the original function and the Fourier cosine transformed function.

Program

The following MATLAB script implements the algorithm.

>> syms t w

> f =

exp(-t);

>> F_cosine = int(f * cos(w * t), t, 0, inf);
>> disp(‘Fourier Cosine Transform of f(t):’)
>> disp(F_cosine)

>> F_cosine_func = matlabFunction(F_cosine, ’Vars’, w);

% Plot the original function

>> figure;

>> fplot(@(t) exp(-t), [0, 5])

>> title(‘Original Function f(t) = e {-t}’)
>> xlabel(‘Time (t)’)

>> ylabel(‘f(t)’)

>> grid on
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% Plot the Fourier cosine transform F_c(w)

>> figure;

>> fplot(F_cosine_func, [0, 10])

>> title(‘Fourier Cosine Transform of f(t) = e~ {-t}’)
>> xlabel(‘Frequency (\omega)’)

>> ylabel(‘F_c(\omega)’)

>> grid on

Output

The output of the program is as follows:

Fourier Cosine Transform of f(t):
real ((1 + wkx1i)/(w"2 + 1))

The output is also given by the figures 6.2 and 6.3.

1 Original Function f{t) = e*
K : ‘

09—\ -

07 N —
0.6 — N —
Sos X -

04— BN —

02 ™~ -

0.1~ =S - |

Time (t)

Figure 6.2: Original Function
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i Fourier Cosine Transform of f(t) = et
N T T T

07~ \\\ o
0.6 — \\ —
=, 05— \ -
04— \\\ -
03— \ —

02 \ 4

0.1 = -

Frequency (w)

Figure 6.3: Fourier Cosine Transform

Exercise Problem

Find the Fourier cosine transform of f(t) = e 2.
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Aim

Practical No. 19

Compute the Fourier sine transform problem with the help of function file in the MATLAB.

Problem

Find the Fourier sine transform of f(t) = te™".

Theory

The Fourier cosine transform of the function f(¢) is given by:

F(w) = /000 sin(wt) f(t)dt. (6.16)

Algorithm

Stepl:

Create a function file fourier_sine_transform;

Step2: Input the function f(¢) and convert input string to a symbolic expression;
Step3: Create a symbolic variable ¢t and w;

Step4: Compute the Fourier sine transform of f(¢) manually;

Step5: Display the Fourier sine transform;

Step6: Convert the Fourier sine transform to a MATLAB function for plotting;
Step7: Plot the original function and Fourier sine transformed function;

Step8: In the command window enter fourier_sine_transform;

Step9: Now enter the function.

Program

The following MATLAB script implements the algorithm.

function fourier_sine_transform()

% Prompt the user to enter a function f(t)

f_str = input(‘Enter the function f(t) in terms of t: ’, ’s’);

f_sym = str2sym(f_str); Y’ Convert the input string to a symbolic expression
% Define symbolic variables

syms t w

% Define the function f(t)

f = subs(f_sym, ‘t’, t); 7% Substitute ‘t’ in case the user input uses ‘t’
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% Compute the Fourier sine transform of f(t) manually
F_sine = int(f * sin(w * t), t, 0, inf);

% Display the Fourier sine transform
disp(‘Fourier Sine Transform of f(t):’)
disp(F_sine)

% Convert the Fourier sine transform to a MATLAB function for plotting
F_sine_func = matlabFunction(F_sine, ‘Vars’, w);

% Plot the original function f(t)
figure;

fplot(matlabFunction(f), [0, 5])
title(‘Original Function’)
xlabel(‘Time (t)’)

ylabel(“f(t)’)

grid on

% Plot the Fourier sine transform F_s(w)
figure;
fplot(F_sine_func, [0, 10])
title(‘Fourier Sine Transform’)
xlabel (‘Frequency (\omega)’)
ylabel (‘F_s(\omega)’)
grid on
end

Output

The output of the program is as follows:

>> fourier_sine_transform

Enter the function f(t) in terms of t: txexp(-t)
Fourier Sine Transform of f(t):

imag(1/(- 1 + wx1i)~2)

The output is also given by the figures 6.4 and 6.5.
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Figure 6.5: Fourier Sine Transform

Exercise Problem

Find the Fourier sine transform of f(t) = te=2".
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Practical No. 20

Aim

Compute the Inverse Fourier transform of the function with the help of function file in the
MATLAB.

Problem

1

Find the inverse Fourier transform of F(w) = 7.

Theory

The inverse Fourier transform of the function F'(w) is given by:

£t = & / " F(w)edw (6.17)

2 J_o

Algorithm

Stepl: Create a function file inverse_fourier_transform;

Step2: Input the function F'(w) and convert the input string to a symbolic expression;
Step3: Creates a symbolic variable ¢ and w;

Step4: Compute the inverse Fourier transform of F'(w) using function ifourier;

Step5: Display the inverse Fourier transform;

Step6: Convert the inverse Fourier transform to a MATLAB function for plotting;
Step7: Plot the original function and inverse Fourier transformed function;

Step8: In the command window, enter inverse_fourier_transform,;

Step9: Now enter the function.

Program

The following MATLAB script implements the algorithm.

function inverse_fourier_transform()
% Prompt the user to enter a function F(w)
F_str = input(‘Enter the function F(w) in terms of w: ’, ‘s’);
F_sym = str2sym(F_str); % Convert the input string to a symbolic expression

% Define symbolic variables
syms t w

% Define the function F(w)

190



Practical No. 20 Laplace and Fourier Transformation

[4 [

F = subs(F_sym, ‘w’, w); 7% Substitute ‘w’ in case the user input uses ‘w’
% Compute the inverse Fourier transform of F(w)

f_t = ifourier(F, w, t);

% Display the inverse Fourier transform
disp(‘Inverse Fourier Transform of F(w):’)
disp(f_t)

% Convert the original function F(w) and the inverse Fourier transform f(t) t
MATLAB functions

F_func = matlabFunction(F, ’Vars’, w);

f_t_func = matlabFunction(f_t, ’Vars’, t);

% Plot the original function F(w)
figure;

fplot (F_func, [-10, 10])
title(‘Original Function F(\omega)’)
xlabel (‘Frequency (\omega)’)

ylabel (‘F(\omega)’)

grid on

% Plot the inverse Fourier transform f(t)
figure;
fplot(f_t_func, [-10, 10])
title(‘Inverse Fourier Transform f(t)’)
xlabel(‘Time (t)’)
ylabel(“f(t)’)
grid on
end

Output

The output of the program is as follows:

>> inverse_fourier_transform()

Enter the function F(w) in terms of w: 1 / (w2 + 4)
Inverse Fourier Transform of F(w):

exp(-2*abs(t))/4

The output is also given by the figures 6.6 and 6.7.
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Exercise Problem

Find the inverse Fourier transform of F'(w)




Chapter 7

Advance Discrete Mathematics

Practical No. 1

Aim

To write a MATLAB program that verifies whether a non-empty set with a given operation
is reflexive. Here user will give input of ’set” and 'operation’ on that.

Problem

Define (S,|) = ({1,2,5,7,10,14,35,70},]|), here | is the operation of divisibility. Using
MATLAB, show that S is reflexive under |.

Theory

a | b if there exist a number ¢ € N such that b = ac.
A relation R is reflexive on S if aRa,Va € S.

Algorithm

Stepl: Using the ’input’ command of MATLAB, define a set and relation given by the
user;

Step2: Define a MATLAB function that takes set and relation as input;

Step3: Check whether each element is related to itself using the concept of looping;
Step4: If it fails to satisfy for any x € S show the message "Failed reflexivity for a = x;
Step5: If given set satisfies Step3, show the message "The given relation is reflexive.’

Program

S=input(’Define a set S= ’);
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relation=input (’define a relation r= ’)

A=Q13_Reflexive(S,relation);

Dot 1o oo ToTo o oo ToTo To o To fo o To o To foTo Fo o To oo fo o o o o foJo Fo o To o Jo o

function isR = Q13_Reflexive(S,r)

% S: A set of elements (e.g., a vector, matrix, or list of numbers)

% r: A function handle representing the binary relation (e.g., @(a,b) a <= b)

isR = true; 7 Assume it’s a Reflexive until proven otherwise

% 1. Check Reflexivity: a <= a for all a in S
for i = 1:length(S)
a = S(i);
if “relation(a, a) % Check if a <= a
disp([’Failed reflexivity for a = ’, num2str(a)]);
isR = false;
return
end
end
if isR
disp(’The given relation is reflexive’);
end
end

Input
S=[1 2 5 7 10 14 35 70];
r=Q(a,b) (alb);

Output

The given relation is reflexive.

Exercise Problem
Q1. Write a MATLAB code that verifies whether a given non-empty set with a given
operation is anti symmetric.

Q2. Verify whether S = {1,2,4,6,8} under operation r = {(a,b)|a = b+ 1} is reflexive.
Q3. Experiment with this code by a set and relation of your choice.

Practical No. 2
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Aim

To write a MATLAB program that verifies whether a non-empty set with a given operation
is transitive. Here user will give input of set and operation on that.

Problem

Define a set S = {1,3,5,6,8,9,10}, and a relation » = {(a,b)la = b+ 1}. Check by a
user-defined MATLAB function, whether it is transitive.

Theory

A relation R is transitive on S, if for a,b,c € S, aRb, bRc then aRc.

Algorithm:

Stepl: Define a nonempty set;
Step2: Define a binary relation of your choice. e.g.,@(a,b)a == b

I

Step3: Call the user defined MATLAB function (Q14_-Transitive(S,r)).

Program:

S=input (’Define a set S= ’);

r=input (’Define a relation r= ’)

A=Q14_Transitive(S,r);

TooTo oo ToToto oo ToTo oo To foTo To o To foTo To o To o To Fo o To foTo fo o o o To fo o o o To foTo o o o fo Jo o

function isT = Q14_Transitive(S,r)

% S: A set of elements (e.g., a vector, matrix, or list of numbers)

% r: A function handle representing the binary relation (e.g., @(a,b) a <= b)

isT = true; ' Assume it’s a Transitive until proven otherwise

% 3. Check Transitivity: If a <= b and b <= ¢, then a <= ¢
for i = 1:length(S)

for j = 1:length(S)

for k = 1:1length(S)

a=S8(i);

b = S(j);

c = S(k);

if r(a, b) && r(b, c) && “r(a, c)

disp([’Failed transitivity for a = ’, num2str(a),’,

b = ’, num2str(b), ’, ¢ = ’, num2str(c).]);
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isT = false;

return;

end

end

end

end

if isT

disp(’The given relation is transitive);

end
end

Input

s=[1 356 8 9 10];
r=0(a,b) (a=b+1);
Output

Failed transitivity for a = 10, b =9, ¢ = 8.

Exercise Problem

Q1. Define a set of numbers S and a binary relation r of your choice. Check the transitivity
by giving these input to the defined function.
Q2. Write a similar MATLAB program to check whether a given relation the symmetric.

Practical No. 3

Aim

To write a MATLAB program that verifies whether a non-empty set with two binary op-
erations 'meet’, and ’join’ is closed. Here non empty set and binary operations meet and
join will be given by user input.

Problem

Define a set S = {1,3,5,7,6,8,11}, operation meet is least common multiple (lcm), and
join is the operation of multiplication. Verify by a user defined MATLAB function whether
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this set is closed under these operations.

Theory

lem(a,b) = Smallest positive integer that is divisible by both a and b.

Algorithm

Stepl: Define a set S;

Step2: Define an operation 'meet’;

Step3: Define an operation ’join’;

Step4: Recall the used defined function Q15_CloseT' (S, meet, join).

Program

S=input (’Define a set S= ’);
meetOp=input (’Define an operation meet
joinOp=input (’Define an operation join
A=Q15_CloseT(S, meetOp, joinOp);

));
)

function isClose = Q15_CloseT(S, meetOp, joinOp)
% S: Set of elements

% meetOp: Function handle for the meet operation
% joinOp: Function handle for the join operation

% Initialize to true
isClose = true;
% Ckeck the operation meet and join are closed.

for i = 1:length(S)
for j = 1:length(S)
% meet

if “ismember (meetOp(S(i), S(j)),S)
disp([’Operation meet is not closed for a=’,

num2str(S(i)), ’ and b= ’, num2str(S(j)),.1);
isClose = false;

return;

end

% join

if “ismember (joinOp(S(i),S(j)),S)
disp([’Operation join is not closed for a=’,
num2str(S(i)), ’ and b= ’ ,num2str(S(j)),.1);
isClose = false;
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return;

end

end

end

if isClose

disp(’The given set is closed under meet and join’);
end

end

Input
s=[1 356 7 8 11];

meet=0@(a,b) lcm(a,b);
join=0(a,b) gcd(a,b);

Output

Operation meet is not closed for a=3 and b= 5.

Exercise Problem
Q1. Write a similar MATLAB program that takes set of characters as input and verify the
closeness of two given operations on that set.

Q2. Define a finite set of numbers and two operations of your choice. Check the closeness
of defined operations by the given user defined MATLAB function.

Practical No. 4

Aim

To write a MATLAB program that verifies the law of absorption on a given non-empty set
with two binary operations 'meet’ and ’join’.

Problem

Define a set S = {1,4,5,23,56,99}, meet(a,b) = a + b* + 3b+ 1, join(a,b) = a - b. Check
the law of absorption on S with these operations.
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Theory

Laws of absorption: a A (aVb) =a; aV (aAb) = a. HereV, and A denotes operation
meet and join respectively.

Algorithm

Stepl: Define a set S;

Step2: Define an operation 'meetOp’;

Step3: Define an operation ’joinOp’;

Step4: recall the user defined function Q16_AbsorptionT (S, meetOp, joinOp).

Program

S=input (’Define a set S= ’);

meetOp=input (’Define an operation meet = ’);
joinOp=input (’Define an operation join = ’);
A=Q16_AbsorptionT(S, meetOp, joinOp);

1o 1oT6 1 To 6 1o ToTo 1o o ToTo o Joo o To o o o To o o Jo o o JoTo o o To 1o o ToTo o ToJo o Jo To o o To o o To T o JoFo o o Fo o
function isClose = Q16_AbsorptionT(S, meetOp, joinOp)

% S: Set of elements

% meetOp: Function handle for the meet operation

% joinOp: Function handle for the join operation

% Initialize to true

isClose = true;

% Ckeck the operation meet and join are closed.
P J

for i = 1:1length(S)
for j = 1:1length(S)
% meet

if “ismember (meetOp(S(i), S(j)),S)
disp([’Operation meet is not closed for a=’,

num2str(S(i)), ’ and b= ’, num2str(S(j)),1);
isClose = false;

return;

end

% join

if ~ismember (joinOp(S(i),S(j)),S)
disp([’Operation join is not closed for a=’,

num2str(S(i)), ’ and b= ’ ,num2str(S(j)),]1);
isClose = false;

return;

end

end

199



Advance Discrete Mathematics Practical No. 5

end
Tolo oo ToTo To o fo o fo o oo oo oo oo o o o o o o o Jo o Fo o To o Jo o Fo o Jo o Jo o Fo o o

% Check absorption for meet and join

for i = 1:1length(S)

for j = 1:length(S)

% Absorption for meet and join

if meetOp(S(i), joinOp(S(i), S(j))) ~= S(i)
disp([’Failed absorption for meet and join for a=
> ,num2str(S(i)), ’, and b= ’ ,num2str(S(j)),]1);
isClose = false;

return;

end

if joinOp(S(i), meetOp(S(i), S(j))) ~= S(i)
disp([’Failed absorption for join and meet for
a=’,num2str(S(i)),’, and b= ’ ,num2str(S(j)),]);
isClose = false;

return;

end

end

end

if isClose

disp(’The given set satisfies the law of absorption under meet and join’);
end

end

Input
S=[1 4 5 23 56 99];

meet=0@(a,b) (a+b"2+3*b+1) ;
join=0(a,b) (a*b);

Output

Operation meet is not closed for a=1 and b= 1

Exercise Problem

Q1. Define a non-empty set and operations 'meet’ and ’join’ such that it will satisfy the
laws of absorption. Verify it using given user defined MATLAB function.
Q2. Define a non empty set with operations 'meet’ and ’join’ such that it will satisfy first

200



Practical No. 5 Advance Discrete Mathematics

law of absorption while fails the second law. Verify it by given user defined MATLAB
function.
Q3. Write a similar MATLAB program that works for set of characters.

Practical No. 5

Aim

To write a MATLAB program that verifies whether a user defined set with two binary
operations 'meet’ and ’join’ satisfies the associative law.

Problem

Define S = {1, 2,4, 10, 20, 25, 50,100}, meet(a,b) = lem(a,b), join(a,b) = gcd(a,b). Write
a MATLAB code to Verify whether the given set with these operations satisfy the associate
law.

Theory

Associative law: aV (bVe) = (aVb)Ve; aA(bAc)= (aAb)Ac. Here V, and A denotes
operation meet and join respectively.

Algorithm

Stepl: Define a set S;

Step2: Define an operation 'meet’;

Step3: Define an operation ’join’;

Step4: Recall the user defined function Q17_Associative(S, meet, join).

Program

function isClose = Q17_Associative(S, meetOp, joinOp)
% S: Set of elements

% meetOp: Function handle for the meet operation

% joinOp: Function handle for the join operation

% Initialize to true

isClose = true;

% Ckeck the operation meet and join are closed.
for i = 1:length(S)
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for j = 1:length(S)

% meet

if ~ismember (meetOp(S(i), S(j)),S)

disp([’Operation meet is not closed for a=’, num2str(S(i)), ’ and b= 7,
num2str(S(j)),1);

isClose = false;

return;

end

% join

if “ismember (joinOp(S(i),S(j)),S)

disp([’Operation join is not closed for a=’, num2str(S(i)), ’ and b= ’
,num2str(S(j)),1);

isClose = false;

return;

end

end

end
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% Check associativity for meet and join

for i = 1:length(S)
for j = 1:length(S)
for k = 1:1length(S)

% Associativity for meet

if meetOp(meetOp(S(i), S(j)), S(k)) “= meetOp(S(i), meetOp(S(j), S(k)))
disp([’Operation meet failed associativity for a=’ num2str(S(i)) ’, and b=’
num2str(S(j)) ’and c= ’ num2str(S(k))]1);

isClose = false;

return;

end

% Associativity for join

if joinOp(joinOp(S(i), S(j)), S(k)) "= joinOp(S(i), joinOp(S(j), S(k)))
disp([’Operation join failed associativity for a=’ num2str(S(i)) ’, b=’
num2str(S(j)) ’, and c= ’ num2str(S(k))]);

isClose = false;

return;

end

end

end

end

if isClose

disp(’The given set satisfies the associative law under meet and join’);
end

end
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Input
>> S=[1 2 4 10 20 25 50 100];
>> m=0(a,b) (lcm(a,b));

>> j=0(a,b) (gcd(a,b));
>> Q17_Associative(S,m,j)

Output

Operation join is not closed for a=10 and b= 25
ans =
logical

0

Exercise Problem

Q1. Check the associative law under same operations meet and join by taking S =
{1,2,4,5,10,20,25,50,100}.

Q2. Is there any impact on the output if we interchange the definition of meet and join?
Verify it by given user defined function.

Q3. Use the given user defined function to verify the associative law on a set and operations
defined by yourself.

Practical No. 6

Aim

To write a MATLAB program that verifies the distributive laws of Boolean algebra under
two user defined operations 'meet’ and ’join’.

Problem
Define S = {1,2,4, 10, 20,25}, OR(a,b) = lem(a,b), AND(a,b) = ged(a,b). Write a MAT-

LAB code to Verify whether the given set with these operations satisfy the distributive
law.
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Theory

Distributive law: aV (bAc)=(aVb)A(aVc); aN(bVe)=(aAb)V(aAc).

Algorithm

Stepl: Define a set S;

Step2: Define an operation "OR’;

Step3: Define an operation ’AND’;

Step4: Recall the user defined function Q18_Bool_distri(S, AND,OR).

Program

function isClose=Q18_Bool_distri(S, AND_Op, OR_Op)

% This function checks whether a given set with defined operations
is a Boolean algebra.

% S: A vector of elements.

% AND_Op: A function handle for the AND operation.

% OR_Op: A function handle for the OR operation.

isClose = true;

% Check if the set is closed under both AND and OR

for i = 1:1length(S)

for j = 1:length(S)

if ~ismember (AND_Op(S(i), S(j)), S)

disp([’Closure property violated under AND operation for a= ’,num2str(S(i)),
’ and b= ’,num2str(S(j))1);

isClose=false;

return;

end

if ~ismember (OR_Op(S(i), S(j)), S)

disp([’Closure property violated under OR operation for a= ’,num2str(S(i)),

’ and b= ’,num2str(S(j))1);
isClose=false;

return;

end

end

end
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% Check distributivity of AND over OR and vice versa

for i = 1:1length(S)
for j = 1:length(S)
for k = 1:length(S)

if AND_Op(S(i), OR_0p(S(j), S(k))) "=
OR_Op (AND_Op(S(i), S(j)), AND_Op(S(i), S(k)))
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disp([’Distributivity violated: AND over OR for a= ’,num2str(S(i)), ’
and b= ’,num2str(S(j)), ’ and c= ’,num2str(S(k)),]);
isClose=false;

return;

end

if OR_Op(S(i), AND_0p(S(j), S(k))) "=

AND_0Op(OR_0p(S(i), S(j)), OR_Op(S(i), S(k)))

disp([’Distributivity violated: OR over AND for a= ’,num2str(S(i)),
> and b= ’,num2str(S(j)), ’ and c= ’,num2str(S(k)),]);
isClose=false;

return;

end

end

end

end

if isClose

disp(’The given set satisfies the distributive law under OR and AND’);
end

end

Input
>> S=[1, 2, 4, 10, 20, 25];
>> A=0(a,b) (gcd(a,b));

>> 0=0(a,b) (lcm(a,b));
>> Q18_Bool_distri(S, A, 0);

Output

Closure property violated under OR operation for a= 2 and b= 25
ans =

logical

0

Exercise Problem
Q1. Write a similar MATLAB program for set of characters.

Q2. Design a finite set of natural numbers with two binary operations that fails to satisfy
the distributive law. Verify it by given user defined MATLAB function.
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Practical No. 7

Aim

To write a MATLAB program that verifies the compliment property of Boolean algebra on
a user defined set with two binary operations.

Problem

Take S = {0, 1}, AND and OR are the logical AND and logical OR operation, ig = 0,i; = 1.
Write a MATLAB code to verify the compliment property of Boolean algebra on S with
these operations.

Theory

Complement property: a V a®=0; a A a® = 0.

Algorithm

Stepl: Define a set S;
Step2: Definite binary operations ’and’, ’or’, unary operations 7¢, and i1;
Step3: Recall the user defined function Q19_Bool Compli(S, and, or,ig, 7).

Program

function isClose=Q19_Bool_Compli(S, AND_Op, OR_Op,i_0,i_1)

% This function checks whether a given set with defined operations
is a Boolean algebra.

% S: A vector of elements.

% AND_Op: A function handle for the AND operation.

% OR_Op: A function handle for the OR operation.

isClose = true;

% Check if the set is closed under both AND and OR

for i = 1:length(S)

for j = 1:length(S)

if ~ismember (AND_Op(S(i), S(j)), S)

disp([’Closure property violated under AND operation for a= ’,num2str(S(i)),
> and b= ’,num2str(S(j))1);

isClose=false;

return;

end

if “ismember (OR_Op(S(i), S(j)), S)
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disp([’Closure property violated under OR operation for a= ’,num2str(S(i)),
’ and b= ’,num2str(S(j))1);

isClose=false;

return;

end

end

end
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% Check complement property

for i = 1:length(S)

complement_found = false;

for j = 1:length(S)

if AND_Op(S(i), S(j)) == i_0 && OR_0p(S(i), S(j)) == i_1

complement_found = true;

break;

end

end

if “complement_found

disp([’Complement property violated for element ’ num2str(S(i)) ’.’]1);

isClose=false;

return;

end

end

if isClose

disp(’The given set satisfies the law of compliment under OR and AND’);

end

end

Input
>> S=[0,1];
>> And=@(a,b) and(a,b);
>> 0r=0(a,b) or(a,b);
>> 1_0=0;
>> i_1=1;
>> Q19_Bool_Compli(S,And,0r,i_0,i_1)

Output

The given set satisfies the law of compliment under OR and AND

ans =
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logical

1

Exercise Problem

Q1. Take the power set P(S) of a finite non-empty set S of characters. Operation OR as
union and operation AND as intersection of two sets, i, = ¢,1; = S. Write a MATLAB code
that verifies the compliment properties of Boolean algebra on P(S) with these operations.

Practical No. 8

Aim

To write a MATLAB program that verifies whether a given non-empty set with a user
defined operation is a POSET.

Problem

Take S ={1,2,3,5,6,7,10, 14, 15,21, 30, 35,42, 70,105,210}, and R, the relation of divisi-
bility. Write a MATLAB code to verify whether (S, R) is a POSET.

Theory

Divisibility: a|b if 3 a number ¢ € N, such that b = ac.

Algorithm

Stepl: Define a set S;
Step2: Define a relation R;
Step3: Recall the function QlcheckPOSET(S, R).

Program

function isPOSET = Q1checkPOSET(S, relation)

% S: A set of elements (e.g., a vector, matrix, or list of numbers)
% relation: A function handle representing

the binary relation (e.g., @(a,b) a <= b)
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isPOSET = true; J Assume it’s a POSET until proven otherwise

% 1. Check Reflexivity: a <= a for all a in S

for i = 1:1length(S)

a = S8(i);

if “relation(a, a) Y% Check if a <= a
disp([’Failed reflexivity for a = ’, num2str(a)]);
isPOSET = false;

return;

end

end

% 2. Check Antisymmetry: If a <= b and b <= a, then a = b
for i = 1:length(S)

for j = 1:length(S)

a = S(i);

b = S(j);

if relation(a, b) && relation(b, a) & a "= b
disp([’Failed antisymmetry for a = ’, num2str(a), ’,
b = 7, num2str(b)]);

isPOSET = false;

return;

end

end

end

% 3. Check Transitivity: If a <= b and b <= ¢, then a <= ¢

for i = 1:length(S)

for j = 1:length(S)

for k = 1:1length(S)

a = 8(@i);

b = S(j);

c = 8(k);

if relation(a, b) && relation(b, c) && “relation(a, c)

disp([’Failed transitivity for a = ’, num2str(a), ’, b = ’, num2str(b),
> ¢ =, num2str(c)]);

isPOSET = false;

return;

end

end

end

end

% If all checks pass
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disp(’The set with the given relation is a POSET.’);
end

Input
>> 8=[1,2,3,5,6,7,10,14,15,21,30,35,42,70,105,210] ;

>> r=0(a,b) rem(b,a)==0;
>> Q1checkPOSET(S,r);

Output

The set with the given relation is a POSET.

Exercise Problem

Q1. Take S = {1,23,4,5,6,7,8,9,10}, R the relation of <. Verify by the given user defined
MATLAB function whether (S, R) is a POSET.

Q2. Define a non empty set S and a relation R which is symmetric but not anti-symmetric
on S. verify it by given MATLAB function.

Practical No. 9

Aim

To write a MATLAB program that verifies whether a given non-empty set with two given
operations (meet & join) is a Lattice.

Problem

Take S ={1,2,3,5,6,7,10,14, 15,21, 30, 35,42, 70, 105, 210}, meet(a, b) = lem(a,b), join(a,b) =

ged(a, b). Write a MATLAB program to verify whether (S, meet, join) is a Lattice.

Theory

Let S be a nonempty set closed under two binary operations called meet and join, denoted
respectively by V and A. Then (S, V,A) is called a lattice if following holds.
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Commutative laws: aVb=bVa,aNb=0bAa.
Associative law: (a Ab)Ac=aA(bAc), (aVb)Ve=aV (bVec).
Absorption law: a A (aVb) =a, aV(aAb)=a.

Algorithm

Stepl: Define a set S;

Step2: Define an operation 'meet’;

Step3: Define an operation ’join’;

Step4: Recall the user defined function Q2_Lattice(S, meet, join).

Program

function isLattice = Q2_Lattice(S, meetOp, joinOp)
% S: Set of elements

% meetOp: Function handle for the meet operation
% joinOp: Function handle for the join operation

% Initialize isLattice to true
islLattice = true;
% Ckeck the operation meet and join are closed.

for i = 1:length(S)
for j = 1:length(S)
’» meet

if ~ismember (meetOp(S(i), S(j)),S)
disp([’Operation meet is not closed for a=’,

num2str(S(i)), ’ and b= ’, num2str(S(j)),1);
isLattice = false;

return;

end

% join

if “ismember (joinOp(S(i),S(j)),S)
disp([’Operation join is not closed for a=’,
num2str(S(i)), ’ and b= ’ ,num2str(S(j)),1);
isLattice = false;

return;

end

end

end

% Check commutativity for meet and join

for i = 1:length(S)

for j = 1:length(S)

% Commutativity for meet

if meetOp(S(i), S(j)) ~= meetOp(S(j), S(i))
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disp([’Operation meet failed commutativity for
a=’ num2str(S(i)) ’, and b= ’ num2str(S(j))]1);
isLattice = false;

return;

end

% Commutativity for join

if joinOp(S(i), S(j)) ~= joinOp(S(j), S(i))

disp([’Operation join failed commutativity for
a=’ num2str(S(i)) ’, and b= ’ num2str(S(j))]1);
isLattice = false;

return;

end

end

end

% Check associativity for meet and join

for i = 1:1length(S)

for j = 1:length(S)

for k = 1:length(S)

% Associativity for meet

if meetOp(meetOp(S(i), S(j)), S(k)) ~=

meetOp(S(i), meetOp(S(j), S(k)))

disp([’Operation meet failed associativity for a=’ num2str(S(i)) ’,
and b= ’ num2str(S(j)) ’and c= ’ num2str(S(k))]);

isLattice = false;

return;

end

% Associativity for join

if joinOp(joinOp(S(i), S(j)), S(k)) "=

joinOp(S(i), joinOp(S(j), S(k)))

disp([’Operation join failed associativity for a=’ num2str(S(i)) 7,
= num2str(S(j)) ’, and c= ’ num2str(S(k))]);

isLattice = false;

return;

end

end

end

end

% Check idempotence for meet and join

for i = 1:length(S)

% Idempotence for meet

if meetOp(S(i), S(i)) "= S(i)

disp([’Operation meet failed idempotence for a=’ num2str(S(i))]);
isLattice = false;
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return;

end

% Idempotence for join

if joinOp(S(i), S(i)) ~= S(i)

disp([’Operation join failed idempotence for a=’ num2str(S(i))]);
isLattice = false;

return;

end

end

% Check absorption for meet and join

for i = 1:1length(S)

for j = 1:length(S)

% Absorption for meet and join

if meetOp(S(i), joinOp(S(i), S(j))) ~= S(i)

disp([’Failed absorption for meet and join for a= ’,num2str(S(i)),
’, and b=’ ,num2str(S(j)),1);

isLattice = false;

return;

end

if joinOp(S(i), meetOp(S(i), S(j))) ~= S(i)

disp([’Failed absorption for join and meet for a= ’,num2str(S(i)),
’, and b= ’ ,num2str(S(j)),]1);

isLattice = false;

return;

end

end

end

if isLattice

disp(’The given set with the given operations is a Lattice.’);
else

disp(’The given set with the given operations is not a Lattice.’);
end

end

Input

>> §=[1,2,3,5,6,7,10,14,15,21,30,35,42,70,105,210] ;
>> m=0(a,b) (1cm(a,b));
>> J=0@(a,b) (gcd(a,b));
>> Q2_Lattice(S,m,J);
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Output

The given set with the given operations is a Lattice.

Exercise Problem

Q1. Take the set S = {1,2,3,5,6,7,10,14,15,21,30,35,42,70,105,210}, and define
meet(a,b) = a + b, and join(a,b) = a - b. Verify by the user defined MATLAB func-
tion whether (S, meet, join) is a Lattice.

Q2. Define a finite non empty set of numbers, and two binary operation of your choice.
Verify whether your set with defined operations is a Lattice. Use the defined MATLAB
function for your verification.

Practical No. 10

Aim

To write a MATLAB program that verifies whether a given non-empty set with some given
operations is a Boolean algebra.

Problem

Take S ={1,2,3,5,6,7,10,14, 15,21, 30, 35,42, 70, 105, 210}, meet(a, b) = lem(a,b), join(a,b) =
gcd(a,b), i, = 1, and 7; = 210. Write a MATLAB program to verify whether
(S, meet, join,ig, i) is a Boolean algebra.

Theory

A non empty set S with two binary operations V and A, element 0 and 1, an unary operation
" is a Boolean algebra if following holds.

Identity Laws: xt VO =z,2 A1 =x,Vr € S.

Complement laws: z V& =1,z Az =0.

Associative laws: (zVy)Vz=zV(yVz);(zAy)Az=xA(yA z).

Commutative laws: tVy=yVz, xAy=yAx.

Distributive laws: zV (yAz)=(xVy)A(xVz), zAyVz)=(@xAy V(zAz).

Algorithm

Stepl: Define a set S;
Step2: Define an operation "AND _Op’;
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Step3: Define an operation 'OR_Op’;

Step4: Define the identity element ig;

Step5: Define the compliment i1;

Step4: Recall the user defined function Q3BooleanAlg(S, AND _Op, OR_Op,ig,i1).

Program

function isBooleanAlgebra=Q3BooleanAlg(S, AND_Op, OR_Op,i_0,i_1)
% This function checks whether a given set with defined
operations is a Boolean algebra.

% S: A vector of elements.

% AND_Op: A function handle for the AND operation.

% OR_Op: A function handle for the OR operation.
isBooleanAlgebra = true;

% Check if the set is closed under both AND and OR
for i = 1:length(S)

for j = 1:length(S)

if “ismember (AND_Op(S(i), S(j)), S)

disp([’Closure property violated under AND operation
for a= ’,num2str(S(i)), ’ and b= ’,num2str(S(j))1);
isBooleanAlgebra=false;

return;

end

if “ismember (OR_Op(S(i), S(j)), S)

disp([’Closure property violated under OR operation
for a= ’,num2str(S(i)), ’ and b= ’,num2str(S(j))1);
isBooleanAlgebra=false;

return;

end

end

end

% Check associativity of AND and OR

for i = 1:1length(S)
for j = 1:length(S)
for k = 1:length(S)

if AND_Op(AND_Op(S(i), S(j)), S(k)) ~= AND_Op(S(i), AND_Op(S(j), S(k)))
disp([’Associativity violated under AND operation for a= ’,num2str(S(i)),

> and b= ’,num2str(S(j)) ’ and c= ’,num2str(S(k))]1);
isBooleanAlgebra=false;

return;

end

if OR_Op(OR_Op(S(i), S(j)), S(k)) "= OR_Op(S(i), OR_Op(S(j), S(k)))
disp([’Associativity violated under OR operation for a= ’,num2str(S(i)),
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> and b= ’,num2str(S(j)) ’ and c= ’,num2str(S(k))]);
isBooleanAlgebra=false;
return;
end
end
end
end

% Check commutativity of AND and OR

for i = 1:length(S)

for j = 1:length(S)

if AND_Op(S(i), S(j)) ~= AND_Op(S(j), S(i))

disp([’Commutativity violated under AND operation for a= ’,num2str(S(i)),
’ and b= ’,num2str(S(j)),1);

isBooleanAlgebra=false;

return;

end

if OR_Op(8(i), S(j)) "= OR_Op(S(j), S(i))

disp([’Commutativity violated under OR operation for a= ’,num2str(S(i)),

’ and b= ’,num2str(S(j)),]1’);
isBooleanAlgebra=false;
return;
end
end
end

% Check distributivity of AND over OR and vice versa

for i = 1:length(S)
for j = 1:length(S)
for k = 1:1length(S)

if AND_Op(S(i), OR_0p(S(j), S(k))) "=

OR_Op (AND_Op(S(i), S(j)), AND_Op(S(i), S(k)))

disp([’Distributivity violated: AND over OR for a= ’,num2str(S(i)),
> and b= ’,num2str(S(j)), ’ and c= ’,num2str(S(k)),]);

isBooleanAlgebra=false;

return;

end

if OR_Op(S(i), AND_0p(S(j), S(k))) "=

AND_Op(OR_0p(S(i), S(j)), OR_0p(S(i), S(k)))

disp([’Distributivity violated: OR over AND for a= ’,num2str(S(i)),
> and b= ’,num2str(S(j)), ’ and c= ’,num2str(S(k)),]);

isBooleanAlgebra=false;

return;

end

end
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end
end

% Check for identity elements O and 1

%i_0 = find(S == 0);

%i_1 = £ind(S == 1);

if isempty(i_0) || isempty(i_1)
disp(’Missing identity elements 0 or 1.7);
isBooleanAlgebra=false;

return;

end

for i = 1:1length(S)

if AND_Op(S(i), i_1) "= S(i) |l OR_Op(S(i), i_0) ~= S(i)
disp(’Identity element property violated.’);
isBooleanAlgebra=false;

return;

end

end

% Check complement property

for i = 1:1length(S)

complement_found = false;

for j = 1:length(S)

if AND_Op(S(i), S(j)) == i_0 && OR_Op(S(i), S(j)) == i_1
complement_found = true;

break;

end

end

if “complement_found

disp([’Complement property violated for element ’ num2str(S(i)) ’.’]1);
isBooleanAlgebra=false;

return;

end

end

disp(’The given set with the given operations is a Boolean Algebra.’);
end

Input

>> s=[1,2,3,5,6,7,10,14,15,21,30,35,42,70,105,210] ;
>> m=0(a,b) (lcm(a,b));
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\

>> J=0(a,b) (gcd(a,b));

>> i0=1;

>> 11=210;

>> Q3BooleanAlg(S,m,J,i0,i1);

Output

Identity element property violated.

Exercise Problem
Q1. Take the same set S, operation meet and join as it is. Define i = 210,7; = 1 and

verify by the defined MATLAB function whether (.S, meet, join, ig, i1) is a Boolean algebra.
Q2. write a similar MATLAB program that works for finite set of characters.

Practical No. 11

Aim

To write a MATLAB program that display all the max terms of a given Boolean expression.
Here user will supply the truth table in array as input.

Problem

Write a MATLAB code that finds the max terms of the Boolean expression of three vari-
ables represented by following truth table.

OO O RrRr O R~
O OO = O =0
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Theory

Maxterm: A maxterm is a sum of variables in Boolean function in which every variable is
present either in normal or in complement form.

Algorithm

Stepl: Run the given MATLAB code;

Step2: Give the input of number of variables (n) as 3;

Step3: Give the input of last column of truth table in array form;
Step 4 See the output in command window.

Program

% Function to find and display maxterms

% Input: Define the number of variables
n = input(’Enter the number of variables: ’);

% Input: Define the truth table (1s and Os corresponding
to f(Al, A2, ..., An))

truth_table = input(’Enter the truth table as a binary
array (e.g., [1 01 01011]): ’);

% Check if the truth table length matches 2°n
if length(truth_table) "= 2°n

error (’Truth table size must be 2°n.’);

end

% Initialize variables (A, B, C, etc.)

variables = cell(l, n);

for i = 1:n

variables{i} = char(’A’ + i - 1); % Generate variable names A, B, C, etc.
end

% Maxterms Initialization
maxterms = {};

% Loop through the truth table and find maxterms
for i = 0:(2°n - 1)

bin_rep = dec2bin(i, n) - ’0’; % Convert number to binary form

% If the function output is O, it’s a maxterm
if truth_table(i+l) ==

219



Advance Discrete Mathematics Practical No. 12

maxterm = ’’;

for j = 1:n

if bin_rep(j) ==

maxterm = [maxterm, variables{j}, ’ + ’]; % Normal variable (OR form)
else

maxterm = [maxterm, variables{j}, ’’’’, ’ + ’]; % Complement (OR form)
end

end

maxterms{end+1} = maxterm(l:end-3); % Remove the last ’ + ’
end
end

% Display the Maxterms
disp(’Maxterms:’);

for i = 1:length(maxterms)
disp(maxterms{i});

end

Input

>> (Q5_Maxterms

Enter the number of variables: 3;

Enter the truth table as a binary array (e.g., [1 010101 1]):
[11101010];

Output

The maxterms are:
{)A+B;+C);} {’A’+B+C“} {)A;+B:+C:)}

Exercise Problem

Q1. Write a similar MATLAB code that takes every entry of truth tables as input and find
the max terms of the given Boolean expression.

Q2. Write a MATLAB program that takes the Boolean expression as input and display the
truth table of that Boolean expression.

Practical No. 12
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Aim

To write a MATLAB program that display all the min terms of a given Boolean expression.
Here user will supply the truth table in array as input.

Problem

Write a MATLAB program that display all the min terms of the Boolean expression given
by following truth table.

p q r Output
1 1 1 0
1 1 0 1
1 0 1 0
0 1 1 0
1 0 0 1
0 0 1 0
0 1 0 1
0 0 O 1
Theory

Min term: A min term is a product of variables in Boolean function in which every variable
is present either in normal or in complement form.

Algorithm

Stepl: Run the code;
Step2: Give the input of complete truth table as a matrix;
Step3: See the output in command window.

Program

% Input: Define the number of variables
[truth_table] = input(’Enter the truth table as a matrix: ’);

Q4_MintermsT (truth_table);

function Q4_MintermsT(truth_table)

% truth_table is a matrix where the last column represents the output
% and the other columns represent the input variables

% Example input for 3 variables: [A B C Output]

% A B C Output
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%000 0
%001 1
%010 1
%011 0
%100 1
%101 0
%110 0
%111 1

% Get the number of variables (columns excluding the last column for the output)
[num_rows, num_cols] = size(truth_table);
num_vars = num_cols - 1;

% Prepare a list of minterms
minterms = {};

% Iterate over the truth table to identify the minterms (rows with output = 1)
for i = 1:num_rows

if truth_table(i, end) == % Output column is 1
% Create the minterm for this row
minterm = ’’;

for j = 1l:num_vars

if truth_table(i, j) ==

minterm = [minterm, char(’A’ + j - 1)]; 7% Variable A, B, C,
else

minterm = [minterm, char(’A’ + j - 1),’’’’]; Y% Inverse A’, B’, C’,
end

if j < num_vars

minterm = [minterm, ’ * ’];

end

end

minterms{end+1} = minterm;

end

end

% Display the minterms

disp(’The minterms corresponding to the output 1 are:’);
for i = 1:length(minterms)

disp(minterms{il});

end

end
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Input

>> (Q4_Minterms
Enter the truth table as a matrix: [1 1 10;1101;1010;0110;
1001;0010;0101;000 17];

Output

The minterms corresponding to the output 1 are:
A x B x C’

A x B x (C’

A> x B x C’

A’ x B x C’

Exercise Problem

Q1. Write a similar MATLAB program that takes input of Boolean expression directly in
place of truth table.

Q2. Write a MATLAB program that takes all min terms of Boolean expression as input
and display the truth table of that Boolean expression.

Practical No. 13

Aim

To write a MATLAB code that minimize and display a user given Boolean expression.

Problem
Write a MATLAB code that simplifies the expression of a Boolean function of three variables

that gives output 1 in the row number 1, 3, 5, 6, and 7 in its truth table represented in
standard order.

Theory

Min term: A min term is a product of variables in Boolean function in which every variable
is present either in normal or in complement form.
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Algorithm

Stepl: Call the function Q20_Bool_fminimizer();

Step2: Inter the number of variables (n);

Step3: Inter the rows numbers (in vector form) of truth table that gives output 1;
Step4: See the output in command window.

Program

function Q20_Bool_fminimizer ()

% Prompt the user for input: number of variables and minterms
num_vars = input(’Enter the number of

variables (e.g., 2 for A,B, 3 for A,B,C): ’);

minterms = input(’Enter the minterms as a

vector (e.g., [1, 3, 5, 71): ’);

% Create symbolic variables
vars = sym(’A’, [1 num_vars]);

% Initialize the Boolean function as 0O
f = 0;

% Create the Boolean expression by summing the minterms
for i = 1:length(minterms)

term = 1; % Initialize each minterm as 1 (ANDed later)
minterm = minterms(i); % Get the current minterm

% Generate the corresponding product for the minterm

for j = 1l:num_vars

if bitget(minterm, j) ==

term = term & vars(j); ’% If bit is 1, include the variable
else

term = term & “vars(j); % If bit is O, include the negation
end

end

% Add the current term (AND of variables) to the function

f =1 | term; % OR all the terms together
end

% Simplify the Boolean expression
simplified_f = simplify(f);

% Display the simplified Boolean function
disp(’Simplified Boolean function:’);
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disp(simplified_f);
end

Input
>> (Q20_Bool_fminimizer

Enter the number of variables (e.g., 2 for A,B, 3 for A,B,C): 3;
Enter the minterms as a vector (e.g., [1, 3, 5, 7]): [1 356 7];

Output

Simplified Boolean function:
Al & A2 | A2 & A3 | Al & A2 & ~A3

Exercise Problem
Q1. Using above MATLAB code, check the output of a Boolean expression of four variables
and a truth table of your choice.

Q2. Write a similar MATLAB code that takes input of truth table outputs in binary form
and display the simplified expression of given Boolean function.

Practical No. 14

Aim

To write a MATLAB code that generates the canonical form (sum of products (SOP)) of
given Boolean expression.

Problem

Write a MATLAB program that display the canonical form (sum of products) of the user
given truth table of a Boolean expression.

Theory

Canonical form (SOP): The sum of minterms that represents the Boolean function is called
the sum-of-products expansion or the disjunctive normal form of the Boolean function.
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Algorithm

Stepl: Recall the user defined MATLAB function Q7_Canonical form_SOP();

Step2: Define the number of variables (n);

Step3: Give the input of last column (output) of truth table of given Boolean expression;

Step4: See the output in command window of MATLAB.

Program

% Function to generate Canonical Sum of Products (SOP) form

function Q7_Canonicalform_SOP()

% Step 1: Get the number of variables from the user
numVars = input(’Enter the number of variables: ’);

% Step 2: Get the truth table output from the user

% The output is a binary vector (Os and 1s) representing the truth table

numRows = 2 numVars;
output = zeros(1l, numRows);

% Total number of rows in the truth table

fprintf ("Enter the truth table output values (0s and 1s):\n’);

for i = 1:numRows

output(i) = input([’Output for row ’, num2str(i), ’:

end

% Step 3: Generate the canonical Sum of Products (SOP) form

SOP = 7,
for i = 1:numRows
if output(i) ==

% Generate the product term corresponding to the current row

term = ’7;
for j = 1l:numVars

% Check if the j-th variable is 1 or O for this row

if bitget(i-1, numVars-j+1) ==

term = strcat(term, char(65 + j - 1)); % ’A’, ’B’,
else

term = strcat(term, char(65 + j - 1), ’’?’);

end

end

% Append the term to SOP, ensuring the correct format

if isempty (SOP)

SOP = term;

else

SOP = strcat(SOP, ’ + ’, term);
end

end
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end

% Step 4: Display the canonical SOP form
disp(’Canonical Sum of Products (SOP) form:’);
disp(S0OP);

end

Input

>> Q7_Canonicalform_SOP

Enter the number of variables: 3

Enter the truth table output values (0s and 1s):
OQutput for row 1

OQutput for row
OQutput for row
OQutput for row
Output for row
Output for row
OQutput for row
OQutput for row

0O ~NO Ok WN -
= = O O = O

Output

Canonical Sum of Products (SOP) form:
A’B’C’ +A’BC’ +A’BC +ABC’ +ABC

Exercise Problem
Q1. Write a MATLAB code that takes the general expression without using truth table of
a Boolean function as input and display the canonical form (SOP).

Q2. Verify the output of defined MATLAB function for five known boolean expression of
your choice.

Practical No. 15
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Aim

To write a MATLAB code that generates the canonical form (product of sums (POS)) of
given Boolean expression.

Problem

Write a MATLAB program that display the canonical form (product of sums) of the user
given truth table of a Boolean expression.

Theory

Canonical form (POS): The products of max terms that represents the Boolean function
is called the products of sum expansion or the conjunctive normal form of the Boolean
function.

Algorithm

Stepl: Recall the user defined MATLAB function Q11_Canonical _POS();

Step2: Define the number of variables (n);

Step3: Give the input of last column (output) of truth table of given Boolean expression;
Step4: See the output in command window of MATLAB.

Program

function pos_form = Q11_Canonical_POS()
% Step 1: Get number of variables
num_vars = input(’Enter the number of variables: ’);

% Step 2: Get the truth table from the user
% Number of rows in the truth table is 2 num_vars
num_rows = 2°num_vars;

fprintf (’Enter the truth table (first %d columns for variable values,
last column for output):\n’, num_vars);

% Initialize truth table
truth_table = zeros(num_rows, num_vars + 1);

% Get input for the truth table

for i = l:num_rows

row_input = input([’Row ’, num2str(i), ’ (enter ’, num2str(num_vars), °’
inputs followed by output value): ’]);
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truth_table(i, :) = row_input;
end

% Step 3: Initialize the POS form
pos_form = ’’;

% Step 4: Loop through each row of the truth table
for i = 1:num_rows

% If output is O, generate the sum term for this row
if truth_table(i, end) ==

% Initialize the sum term

sum_term = ’’;

% Generate the sum term for this row

for j = 1l:num_vars

if truth_table(i, j) == 1

% If the variable is 1, do not negate it
sum_term = [sum_term, char(’A’ + j - 1)];

else

% If the variable is 0, negate it

sum_term = [sum_term, char(’A’ + j - 1), ’’’’];
end

% Add ’+’ between variables in the sum term
if j < num_vars

sum_term = [sum_term, ’ + ’]

end

end

% Add the sum term to the POS form

if isempty(pos_form)

pos_form = sum_term;

pos_form=[’(’,pos_form,’)’];

else

pos_form = [pos_form, ’ * ’, *(’,sum_term,’)’]; % Add ’*’ between sum terms
end

end

end

% Step 5: Output the final POS expression

disp(’The Product of Sums (POS) Canonical Form is:’);
disp(pos_form) ;

end
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Input

>> Q11_Canonical_P0OS
Enter the number of variables:
Enter the truth table (first 3 columns for variable

values, last

Row 1 (enter
Row 2 (enter
Row 3 (enter
Row 4 (enter
Row 5 (enter
Row 6 (enter
Row 7 (enter
Row 8 (enter
Output

3

column for output):

W WwwWwwwwww

inputs
inputs
inputs
inputs
inputs
inputs
inputs
inputs

followed
followed
followed
followed
followed
followed
followed
followed

by
by
by
by
by
by
by
by

output
output
output
output
output
output
output
output

value) :
value) :
value) :
value) :
value) :
value) :
value) :
value) :

The Product of Sums (P0S) Canonical Form is:
(A+B+C) *x (A+B+C) x (A + B> +C)

ans

A+ B+C) » (A +B+C) (A +B” +C)’

Exercise Problem

(1
1
1
[0
[1
(o
[1
[0

O O OO+ O -

O, Pk, OFr P O -

0]
1]
1]
0]
1]
0]
1]
1]

Q1. Verify the result by taking a Boolean expression of four variables.
Q2. Write a similar MATLAB program that takes SOP as input and returns the POS as
the output.

Aim

Practical No. 16

To write a MATLAB program that verifies whether a given POSET is a Lattice. Here
concept of greatest lower bound and least upper bound should be used in the program.
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Problem

Write a MATLAB program that takes relation matrix as input and verifies whether a given
POSET is Lattice.

Theory

A non empty set S with relation R is a POSET (partially ordered set), if it is reflexive,
anti-symmetric, and transitive.

Algorithm

Stepl: Take a non empty set S, such that |S| = n;

Step2: Define a binary matrix M = (m;;),x, where m;; =1, if it" element of S is related
to j element of S, otherwise m;; = 0;

Step3: Recall the function Q12_Checklattice_byPOSET (M );

Step4: See the output in command window.

Program

function is_lattice = Q12_CheckLattice_byPOSET (POSET)

%This function takes POSET matrix as input variable.

% Check if a given POSET is a lattice.

% Input: POSET - A matrix representing the partial order

% Output: is_lattice - Boolean (1 for lattice, O for non-lattice)

% Get the number of elements in the POSET
n = size(POSET, 1);

% Initially assume that the POSET is a lattice
is_lattice = true;

% Loop through all pairs of elements in the POSET

for i = 1:n

for j = 1:n

if i 7=

% Check for the join (LUB) and meet (GLB) of elements i and j
% Find the join (LUB) of elements i and j

join_exists false;

meet_exists false;

for k = 1:n
if POSET(i, k) == 1 && POSET(j, k) ==
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join_exists = true;

end

if POSET(k, i) == 1 && POSET(k, j) == 1
meet_exists = true;

end

end

% If join or meet does not exist for any pair, it’s not a lattice

if “join_exists || “meet_exists
is_lattice = false;

disp(’The given POSET is not a Lattice.’)
return;

end

end

end

end

% If all pairs have meet and join, the POSET is a lattice

disp(’The POSET is a lattice.’);
end

Input

>> M=[110;010;10 1];
>> Q12_CheckLattice_byPOSET (M)

Output

The given POSET is not a Lattice.
ans =
logical

0

Exercise Problem

Q1. Write a similar MATLAB code that display the least upper bound (LUB), and greatest
lower bound (GLB) for every subset of a given POSET. It also display the comment if it
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does not exist for some subsets.
Q2. Write a MATLAB program that display the directed graph of a given POSET.

Practical No. 17

Aim

To write a MATLAB program that finds homogeneous solution, particular solution, and
total solution of a given system of linear algebraic equations.

Problem

Write a MATLAB program that display the homogeneous solutions, particular solution,
and total solutions of a given system of linear algebraic equations.

Theory

A system of linear algebraic equations AX = b is consistent if rank(A)=rank(A:b). A con-
sistent system has unique solution if rank(A)=rank(A:b)=number of variables/unknowns
and has infinitely many solutions if rank(A)=rank(A:b)< number of unknowns.

Algorithm

To find the solution of a system of linear algebraic equations AX = b, take the following
steps.

Stepl: Define a matrix A;

Step2: Define a vector b;

Step3: recall the function Q10_solve_system(A,b);

Step4: See the output in command window.

Program

function [x_homogeneous, x_particular, x_total] = Q10_solve_system(A, b)
% Input:

% A: Coefficient matrix (2x2 for example)

% b: Right-hand side vector (2x1 for example)

% Step 1: Find the Homogeneous Solution A*x = 0

% The homogeneous system is A * x_h = 0
% Solve for x_h using null(A), which gives the null space of A
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x_homogeneous = null(A);

% Step 2: Find the Particular Solution A * x = b
% Solve the system A * x = b using the left division operator \
if rank(A) == length(b) % Ensure A is solvable for b
x_particular = A \ b; % Use MATLAB’s backslash operator

for solving linear systems

else

x_particular = ’No unique particular solution, system is
inconsistent or underdetermined.’;

end

% Step 3: Find the Total Solution: x = x_homogeneous + x_particular

% The total solution is the sum of homogeneous and particular solutions.
% If the system has a unique particular solution, compute the total solution.
if ischar(x_particular)

x_total = x_particular; % Return error message if no unique

solution exists

else

x_total = x_particular + x_homogeneous; % Add the homogeneous

solution to the particular one

end

% Display the results

disp(’Homogeneous Solution:’);

disp(x_homogeneous) ;

disp(’Particular Solution:’);

disp(x_particular);

disp(’Total Solution:’);

disp(x_total);

end

Input

%» Define the system of equations
=[123;456;789];
[5; 10; 15];

o =
o

% Call the function to solve the system
[x_homogeneous, x_particular, x_total] = Q10_solve_system(A, b);
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Output

Homogeneous Solution:
0.4082

-0.8165

0.4082

Particular Solution:

No unique particular solution, system is inconsistent or underdetermined.
Total Solution:

No unique particular solution, system is inconsistent or underdetermined.

Exercise Problem

Q1. Take a system of linear algebraic equations AX = b that is consistent. Verify the
solution of defined MATLAB function.

Q2. Take a system of equations in which coefficient matrix is of size 3 x 4. Verify the
solution by defined MATLAB function Q10_solve_system(A,b).

Practical No. 18

Aim

To write a MATLAB program that plots the diagram of deterministic finite automaton
(DFA).

Problem

Write a MATLAB function that takes states, alphabets, transition matrix, start state, and
accept states as input and display the deterministic finite automaton (DFA) diagram as
output.
Theory
Deterministic finite automaton (DFA) is defined as 5 tuples

DFA = (QazaéaqmF)-

Here,
Q@ is a finite set of states.
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> is the finite set of input symbols, known as alphabet.

0 is the transition function, a mapping ¢ : ) X ¥ — @), which specifies the next state for a
given current state and input symbol.

qo € @ is the start state in which the automaton begins when processing at input string.
F C @ is the set of accepting (or final) states, where the automaton can accept the input
string.

Algorithm

Stepl: Define a states Q;

Step2: Define alphabet §;

Step3: Define a transition matrix M;

Step4: Define the start state s;

Step5: Define the accept state a;

Step6: Recall the function Q9 _plot_dfa(Q,d, M, s, a);
Step7: See the output plotted graph.

Program

function Q9_plot_dfa(states, alphabet,
transitions, start_state, accept_states)
%This function is designed to plot the Diagram of DFA determined by an
%hAutomaton.
% states: List of all states in the DFA (e.g., 1, 2, 3,...)
% alphabet: List of symbols in the alphabet (e.g., {’a’, ’b’})
% transitions: Transition matrix, where transitions(i, j)
is the next state from state i on input alphabet(j)
% start_state: The initial state (integer)
% accept_states: A vector of accept states (e.g., [2, 4])

% Number of states
num_states = length(states);
num_alphabet = length(alphabet);

% Create a directed graph for the DFA
edges = [];
labels = {};

% Iterate over all states and their transitions

for i = 1l:num_states

for j 1:num_alphabet

next_state = transitions(i, j);

if next_state "= 0 % Ignore transitions to non-existent states
edges = [edges; i, next_state];
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labels = [labels; alphabet{j}];
end
end
end

/» Create a directed graph
G = digraph(edges(:, 1), edges(:, 2));

% Plot the DFA
figure;
p = plot(G, ’Layout’, ’circle’, ’NodelLabel’, states);

% Highlight the start state
highlight(p, start_state, ’NodeColor’, ’g’, ’MarkerSize’, 7);

% Highlight the accept states
highlight(p, accept_states, ’NodeColor’, ’r’, ’MarkerSize’, 7);

% Set up labels for the transitions
edge_labels = cell(size(edges, 1), 1);
for i = 1:length(labels)
edge_labels{i} = labels{il};

end

% Add the edge labels (transition symbols)
labelnode(p, 1:num_states, num2cell(states));
1 = addedge(p, edges(:,1), edges(:,2), edge_labels);

% Title
title(’DFA Diagram’);

% Customize plot appearance
axis off;

set(gca, ’XTick’, [1);
set(gca, ’YTick’, [1);

% Add a legend or annotations if needed

legend(’Start State’, ’Accept State’, ’Location’, ’Best’);
end
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Input

>> states = [1, 2, 3]; % States: 1 =90, 2 =ql, 3 =q2
alphabet = {’0’, ’1’}; % Alphabet: {0, 1}

transitions = [2, 1; 2, 3; 2, 1]; % Transition matrix:
h1->00) -—>2, (1) >1

h2->00) -—>2, (1) >3

h3 >0 —>2, (1) >1

start_state = 1; 7 Start state: qO
accept_states = 3; % Accept state: g2

% Plot the DFA diagram

Q9_plot_dfa(states, alphabet, transitions, start_state, accept_states);

Output

‘@

Figure 7.1: DFA graph
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Exercise Problem
Q1. Using defined MATLAB function, display the DFA graph for the following statistics.

states = [1,2, 3|, alphabet = {a, b}, transition matrix = [2,3;1, 2; 3, 1], start state = 1, and
accept states = 2.
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Aim

To write a MATLAB program that analyze the asymptotic behavior of a user defined
function.

Problem

Write a MATLAB program to analyze the asymptotic behavior of user defined numerical
functions.

Theory

Behavior of function when input variable goes towards infinity is called asymptotic behavior
of that function.

Algorithm

Stepl: Run the given MATLAB code;
Step2: Give the expression of function that will be asked by program as input;
Step3: see the output plotted graph.

Program

% MATLAB program to analyze the asymptotic behavior of
a user-defined function

% Prompt user for input function
func_str = input(’Enter a function f(x) in terms
of x (e.g., "sin(x)/x"): ’, ’s’);

% Convert the function string to an anonymous function handle
f = str2func([’@(x) ’ func_str]l);

% Define the range of x (use logspace fo better handling of large
and small x values)

logspace(-1, 3, 100); % x from 10°-1 to 1073
zeros(size(x_vals)); % Initialize y values

x_vals
y_vals

% Handle any potential issues with division by zero or undefined values
for i = 1:length(x_vals)
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try
y_vals(i)
catch
y_vals(i)
end

end

f(x_vals(i));

NaN; % If the function is undefined, store NaN

% Plot the function

figure;

semilogx(x_vals, y_vals, ’LineWidth’, 2);

grid on;

xlabel(’x’);

ylabel (C£(x)’);

title([’Asymptotic Behavior of f(x) = ’, func_str]);
x1lim([min(x_vals) max(x_vals)]);

ylim([-1.5 1.5]); % Adjust y-limits to zoom in on
typical function behavior

% Display asymptotic behavior in the command window

fprintf (’Asymptotic behavior of the function as x -> infinity:\n’);
try

y_inf = f(1e3);

fprintf ("£(x) as x -> infinity: %.5f\n’, y_inf);

catch

fprintf ("£(x) as x -> infinity is undefined\n’);

end

fprintf (’Asymptotic behavior of the function as x -> 0:\n’);
try

y_zero = f(le-3);

fprintf (’£(x) as x -> 0: %.5f\n’, y_zero);

catch

fprintf (’£(x) as x -> 0 is undefined\n’);

end

Input

>> (8_Asymptotic_Behavior_f
Enter a function f(x) in terms of x (e.g., "sin(x)/x"): sin(x)/x

Output

241



Advance Discrete Mathematics Practical No. 20

Asymptotic Behavior of f(x) = sin(x)/x

15

f(x)
1
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Figure 7.2: Asymptotic graph of Smﬂgﬁ

Exercise Problem

cos(z)

Q1. Use the written MATLAB program and analyze the asymptotic behavior of ==.
Q2. Define a numerical function of your choice and analyze the asymptotic behavior of that
function using written MATLAD code.

Practical No. 20

Aim

To write a MATLAB program to find a reduced machine (that reduces the states in a
deterministic finite automation (DFA)).

Problem

Write a MATLAB program that takes input from user and minimize the number of states
in DFA.
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Theory

Deterministic finite automaton (DFA) is defined as 5 tuples
DFA=(Q,%,4,q,F).

Here,

@ is a finite set of states.

> is the finite set of input symbols, known as alphabet.

0 is the transition function, a mapping J : () X ¥ — ), which specifies the next state for a
given current state and input symbol.

qo € @ is the start state in which the automaton begins when processing at input string.
F C @ is the set of accepting (or final) states, where the automaton can accept the input
string.

Algorithm

Stepl: Define a state S;

Step2: Define alphabet a;

Step3: Define a transition matrix M,

Step4: Define initial state s1;

Step5: Define final state s2;

Step6: Recall the user defined MATLAB function minimize DF A(S, a, M, s1, s2);
Step7: See the output in MATLAB command window.

Program

function [minimizedDFA, minimizedStates] =

minimizeDFA(states, alphabet, transition, initialState, finalStates)

% states: Cell array of state names (e.g., {’q0’, ’ql’, ’q2’})

% alphabet: Cell array of alphabet symbols (e.g., {’0’, ’1’})

% transition: Matrix representing transitions,

where transition(i, j) is the next state from state i on input symbol j.
% initialState: The index of the initial state.

% finalStates: Indices of final (accepting) states.

% Output:
% minimizedDFA: The transition table of the minimized DFA.

% minimizedStates: The new state names of the minimized DFA.

numStates = length(states);
numSymbols = length(alphabet) ;

% Step 1: Initialize the partition
% Partition the states into accepting and non-accepting sets.
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acceptingStates = finalStates;
nonAcceptingStates = setdiff (1:numStates, acceptingStates);
partition = {acceptingStates, nonAcceptingStates};

% Step 2: Refining the partition
change = true;

while change

change = false;

newPartition = {};

% Go through each group in the current partition

for i = 1:length(partition)

group = partition{i};

% Group states by their transitions on each input symbol
transitionGroups = containers.Map;

for state = group

% Get the transitions for this state

transitions = zeros(l, numSymbols);

for j = 1:numSymbols

nextState = transition(state, j); % Find the next state for this input

transitions(j) = find(nextState == [partition{:}]); % Find
the group of the next state
end

% Use the transition tuple as a key to group states
key = mat2str(transitions); % Use the transition vector as a key
if isKey(transitionGroups, key)

transitionGroups(key) = [transitionGroups(key), statel];
else

transitionGroups(key) = state;

end

end

% Add new groups formed by transitions
newPartition = [newPartition, values(transitionGroups)];
end

% If the partition has changed, update it

if length(newPartition) ~= length(partition)
partition = newPartition;

change = true;

end

end
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% Step 3: Assign new state names to each partition
minimizedStates = cell(1l, length(partition));

for i = 1:length(partition)

minimizedStates{i} = [’q’ num2str(i)];

end

% Step 4: Construct the minimized transition table

minimizedDFA = zeros(length(partition), numSymbols);

for i = 1:length(partition)

for j 1:numSymbols

%» Find the next state of each state in the group under the given input
nextState = transition(partition{i}(1), j); % Take

the first state of the group

for k = 1:length(partition)

if ismember(nextState, partition{k})

minimizedDFA(i, j) = k; % Assign the corresponding minimized state
break;

end

end

end

end

% Step 5: Determine the new initial state and final states
minimizedInitialState = find(cellfun(@(x)

ismember (initialState, x), partition));
minimizedFinalStates = find(cellfun(@(x)

any (ismember (x, finalStates)), partition));

% Display the minimized DFA

disp(’Minimized DFA States:’);

disp(minimizedStates);

disp(’Minimized DFA Transition Table:’);

disp(minimizedDFA) ;

disp([’Minimized Initial State: q’, num2str(minimizedInitialState)]);
disp([’Minimized Final States: q’, num2str(minimizedFinalStates)]);
end

Input
states = {’q0’, ’ql’, ’q2’, ’q3’}; ' States
= {

alphabet 0’, ’1°}; % Alphabet
transition = [

245



Advance Discrete Mathematics

Practical No. 20

2, 1; % From q0, on 0 go to ql, on 1 go
1, 2; % From g1, on O go to gi, on 1 go
4, 3; % From g2, on 0 go to g4, on 1 go
4, 3; % From g3, on 0 go to g4, on 1 go
1; % Transition table

initialState = 1; % Initial state qO
finalStates = [2]; 7% Final state gl

[minimizedDFA, minimizedStates] =

to
to
to
to

minimizeDFA(states, alphabet, transition, initialState, finalStates);

Output

Minimized DFA States:

)ql)
)q2)

Minimized DFA Transition Table:
2 1
2 1

Minimized Initial State: ql
Minimized Final States: g2

Exercise Problem

Q1. Write a similar MATLAB code for Kleen’s theorem.
Q2. Give the input statistics of DFA of your choice and verify output of defined MATLAB

function.
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Aim

To solve a given problem of Conditional theorem with the help of MATLAB.

Problem

In a bag of 5 red and 3 blue marbles, one marble is drawn at random and not replaced.
Then, a second marble is drawn. What is the probability that the second marble drawn is
blue, given that the first marble drawn was red?

Theory

Let:
e R1 be the event that the first marble drawn is red.

e B2 be the event that the second marble drawn is blue.

We want to find P(B2 | R1), the probability of drawing a blue marble second given that a
red marble was drawn first.

e step 1: Calculate the probability of drawing a red marble first (P(R1)):
There are 5 red and 3 blue marbles, for a total of 8 marbles.
P(R1) = Number of Red Marbles / Total Marbles = 5/8.

e step 2: Calculate the probability of drawing a blue marble second given that a red
was drawn first (P(B2 | R1)): After drawing one red marble, we have 4 red and 3
blue marbles left, totaling 7 marbles.

P(B2 | R1)= Remaining Blue Marbles / Remaining Total Marbles = 3/7.

So, the final answer is P(B2 | R1) = 3/7 ~ 0.429.
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Algorithm

Step 1: Define total marbles as total marbles = 8.

Step 2: Define number of red and blue marbles as red_marbles = 5; and blue_marbles =
3.

Step 3: Calculate Probability of drawing a red marble first as P_R1 = red_marbles / to-
tal_marbles.

Step 4: Update number of marbles after drawing one red marble as remaining marbles =
total_marbles 1 and remaining_blue_marbles = blue_marbles.

Step 5: Calculate Probability of drawing a blue marble second, given first was red
P_B2_given R1 = remaining_blue_marbles / remaining_marbles.

Step 6: Display the rsesult as fprintf(‘The probability of drawing a blue marble second
given that the first was red is: %.3f \n/, P_B2_given_R1).

Program

% Total marbles
total_marbles = 8;

% Number of red and blue marbles
red_marbles = 5;
blue_marbles = 3;

% Probability of drawing a red marble first
P_R1 = red_marbles / total_marbles;

% Update number of marbles after drawing one red marble
remaining_marbles = total_marbles - 1;
remaining_blue_marbles = blue_marbles;

% Probability of drawing a blue marble second, given first was red
P_B2_given_R1 = remaining_blue_marbles / remaining marbles;

% Display the outcome
fprintf (‘The probability of drawing a blue marble second given that the first was red is: Y

Tttt oo o oo o ToTo o To oo o o o o o o o o o o o o fo oo To oo ToToToTo o oo oo o o o o o o o o o o o o o To ToToToTo oo oo oo o o o o o o o o o o T To T To T To T o o

% Define the condition and probability

condition = {‘After Red Marble Drawn’};

probability = 3/7; 7% Probability of blue on the second draw given the first was
red

% Create a bar chart
figure;
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bar(probability, ‘FaceColor’, [0.53, 0.81, 0.98]); % Light blue color
set(gca, ‘xticklabel’, condition);

% Label the chart

title("Probability of Drawing a Blue Marble Second Given First is Red");
xlabel (‘Condition’);

ylabel (‘Probability of Blue Marble (Second Draw)’);

ylim([0 1]1);

% Annotate the bar with the probability value
text (1, probability + 0.02, num2str(probability, ‘%.3f’),
‘HorizontalAlignment’, ‘center’, ‘Color’, ‘blue’, ‘FontWeight’, ‘bold’);

Output

The output of the program for various inputs is as following:

The probability of drawing a blue marble second given that the first was red
0.429

Probability of Drawing a Blue Marble Second Given First is Red

o
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T
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o
o
T
|

o
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T
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o
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T
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0.429

Probability of Blue Marble (Second Draw)
© o o o
AN w E=Y (9)]

o
=
T
I

After Red Marble Drawn
Condition

o
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General Matlab program

% Ask the user for input values

total_marbles = input(‘Enter the total number of marbles: ’);
% Total number of marbles

red_marbles = input(‘Enter the number of red marbles: ’);

% Number of red marbles

blue_marbles = input(‘Enter the number of blue marbles: ’);

% Number of blue marbles

% Check if the inputs are valid

if red_marbles + blue_marbles > total_marbles
disp(‘Error: The sum of red and blue marbles cannot exceed the total number of
marbles.’);

return;

elseif red_marbles < O || blue_marbles < 0 || total_marbles <= 0
disp(‘Error: Invalid input. Please enter positive values.’);
return;

end

% Probability of drawing a red marble first
P_R1 = red_marbles / total_marbles;

% Update the number of marbles after drawing one red marble
remaining _marbles = total_marbles - 1;
remaining_blue_marbles = blue_marbles;

% Probability of drawing a blue marble second, given the first was red
P_B2_given_R1 = remaining blue_marbles / remaining_marbles;

% Display the calculated probability in the command window
fprintf (‘The probability of drawing a blue marble second given that the first was red
is: %.3f\n’, P_B2_given_R1);

% Condition description and its probability for plotting
condition = {‘After Red Marble Drawn’};

% Text for the condition

probability = P_B2_given_R1;

% Probability of drawing blue second after red first

% Create a bar chart to visualize the probability

figure;

bar(probability, ‘FaceColor’, [0.53, 0.81, 0.98]); % Light blue color
set(gca, ‘xticklabel’, condition); % Set the x-axis label to the condition
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% Label the chart

title("Probability of Drawing a Blue Marble Second Given First is Red");
xlabel(‘Condition’);

ylabel(‘Probability of Blue Marble (Second Draw)’);

ylim([0 1]); % Set y-axis range from O to 1

% Annotate the bar with the probability value
text (1, probability + 0.02, num2str(probability, ‘%.3f’),
‘HorizontalAlignment’, ‘center’, ‘Color’, ‘blue’, ‘FontWeight’, ‘bold’);

% Display the chart with a grid
grid on;
Exercise Problem

A deck of 52 playing cards is shuffled, and one card is drawn at random. Without replacing
it, a second card is drawn. What is the probability that the second card is an ace, given
that the first card drawn was a king?

Practical No. 2

Aim

To solve a given problem of Independent events with the help of MATLAB.

Problem

In a factory, the probability that a randomly selected product is defective is P(D) = 0.02.
The probability that it was made on Machine A is P(A) = 0.3. Assume that being defective
is independent of which machine the product is made on.

1. Calculate the probability that a product is defective and made on Machine A, P(A
N D).
2. Calculate the probability that a product is not defective and made on Machine A.

Theory

e Step 1: Interpret the Given Data
We are given P(D) = 0.02, the probability that a product is defective.
Since ‘defective’ and ‘made on Machine A’ are independent events, we can use the
rule for independent events:

P(A N D) = P(A) * P(D)
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e Step 2: Calculate P(A N D)
Using the independence formula:
P(AND)=P(A) * P(D)= 0.3 * 0.02 = 0.006
So, the probability that a product is defective and made on Machine A is 0.006.

e Step 3: Calculate P(not D N A)
First, find P(not D). Since the probability of a product being defective is P(D) =
0.02, the probability that it is not defective is:
P(not D) = 1- P(D) = 1 - 0.02 = 0.98

Now, we use the fact that ‘not defective’ and ‘made on Machine A’ are also independent
events:

P(not DN A) =P(not D) * P(A) = 0.98 * 0.3 = 0.294

Thus, the probability that a product is not defective and made on Machine A is 0.294.

Algorithm

Step 1: Define probability as P D = 0.02: Probability of a product being defective and
P_ A = 0.3: Probability of a product being made on Machine A.

Step 2: Calculate combined probabilities: P_ A_ and P_ D: Probability that a product is
defective and made on Machine A, calculated as P_ A * P_D.

Step 3: Calculate P_not_ D = 1 - P_ D: Probability that a product is not defective.
Step 4: Calculate P_not_D_and_ A: Probability that a product is not defective and made
on Machine A, calculated as P_not_ D * P_ A.

Step 5: Display results: Print both probabilities using fprintf.

Program

Below is the MATLAB code to calculate these probabilities.

% Given probabilities
P_D = 0.02; % Probability that a product is defective
P_A =0.3; % Probability that a product is made on Machine A

% 1. Probability that a product is defective and made on Machine A
P_A_and D = P_A x P_D;

% 2. Probability that a product is not defective and made on Machine A
P_not_ D =1 - P_D; % Probability that a product is not defective
P_not_D_and_A = P_not_D * P_A;

% Display the results

fprintf (‘The probability that a product is defective and made on Machine A is:
%.3f\n’, P_A_and_D);

fprintf (‘The probability that a product is not defective and made on Machine A is:
%.3f\n’, P_not_D_and_A);
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Output

The output of the program for various inputs is as following:

The probability that a product is defective and made on Machine A is: 0.006
The probability that a product is not defective and made on Machine A is: 0.294
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Probability of Product Condition and Machine A

0.3 0.294 ]
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Product Condition

General Matlab program

% Given probabilities
P_D = 0.02; % Probability that a product is defective
P_A = 0.3; % Probability that a product is made on Machine A

% 1. Probability that a product is defective and made on Machine A
P_A_and D = P_A * P_D;

% 2. Probability that a product is not defective and made on Machine A
P_not_ D =1 - P_D; % Probability that a product is not defective
P_not_D_and_A = P_not_D * P_A;

% Display the results

fprintf (‘The probability that a product is defective and made on Machine A is:
%.3f\n’, P_A_and_D);

fprintf (‘The probability that a product is not defective and made on Machine A is:
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%.3f\n’, P_not_D_and_A);

% Define probabilities

p-A = 0.3; % Probability of being made on Machine A
p_D = 0.02; % Probability of being defective

p_not_ D = 1 - p_D; % Probability of not being defective

% Calculations for combined probabilities
p_A_and_ D = p_A * p_D;
p_A_and_not_D = p_A * p_not_D;

% Set up labels and values for visualization

categories = {‘Defective and made on Machine A’, ‘Not defective and made on Machi
A’Y;

values = [p_A_and_D, p_A_and_not_D];

% Create bar chart

figure;

bar (values, ‘FaceColor’, ‘flat’);

title(‘Probability of Product Condition and Machine A’);
xlabel (‘Product Condition’);

ylabel (‘Probability’);

xticklabels(categories);

ylim([0, max(values) + 0.05]); % Add some padding above bars

% Set colors for each bar
colormap([1 0 0; 0 1 0]); % Red for defective, Green for not defective

% Display probabilities on top of each bar
for i = 1:length(values)
text (i, values(i) + 0.01, sprintf(‘%.3f’, values(i)),
‘HorizontalAlignment’, ‘center’, ‘FontWeight’, ‘bold’);
end

Exercise Problem

In a warehouse, the probability that a product is fragile is P(F)=0.15, and the probability
that it is stored in the top row is P(T)=0.4. Assume that being fragile is independent of
the storage location.

1. Calculate the probability that a product is both fragile and stored in the top row.
2. Calculate the probability that a product is not fragile and is stored in the top row.

Practical No. 3
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Aim

To solve a given problem of Bayes theorem with the help of MATLAB.

Problem

There are two bags, Bag A and Bag B. Bag A contains 4 red balls and 6 blue balls, while
Bag B contains 7 red balls and 3 blue balls. A bag is selected at random, and a ball is
drawn from it. If the ball drawn is red, what is the probability that it came from Bag B?

Theory

e Step 1: Determine Initial Probabilities for Selecting Each Bag:
Since a bag is chosen at random, we have:
P(A) =05
P(B) =0.5

e Step 2: Calculate the Probability of Drawing a Red Ball from Each Bag:
For Bag A: P(R | A) = (Number of Red Balls in Bag A) / (Total Balls in Bag A)

= 4/10 = 0.4
For Bag B: P(R | B) = (Number of Red Balls in Bag B) / (Total Balls in Bag B)
=7/10 = 0.7

e Step 3: Calculate the Total Probability of Drawing a Red Ball (P(R)): Using the
law of total probability:
PR)=P[R|A) *P(A) + P(R | B) * P(B)
Substituting the values:
P(R) = (0.4 * 0.5) + (0.7 * 0.5) = 0.55

e Step 4: Apply Baye’s Theorem to Find P(B — R):
Using Baye’s theorem:
P(B | R) — (P(R | B) * P(B)) / P(R)
Substituting the values:
P(B|R) = (0.7*0.5) / 0.55 ~ 0.636

So, the probability that the red ball came from Bag B is approximately 0.636.

Algorithm

Step 1: Set initial probabilities as P_. A = 0.5 and P_ B = 0.5.

Step 2: Set conditional probabilities as P_R_ given- A = 0.4 (from Bag A) and P_R_ given_
B = 0.7 (from Bag B).

Step 3: Calculate total probability of drawing a red ball as P_. R = (P_ R_ given_ A * P_
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A) + (P_R_given_ B * P_B).

Step 4: Apply Bayes theorem to find probability of Bag B given a red ball P_ B_ given_ R
= (P_R_given.B*P_B) / P_R.

Step 5: Display the result using fprintf.
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Program

% Initial probabilities of selecting each bag
P_A = 0.5;
P_B = 0.5;

% Probability of drawing a red ball from each bag
P_R_given_A = 4 / 10; 7 Bag A: 4 red balls out of 10
P_R_given_.B =7 / 10; 7% Bag B: 7 red balls out of 10

% Total probability of drawing a red ball
P_R = (P_R_given_A * P_A) + (P_R_given_B * P_B);

% Applying Baye’s theorem to find P(B | R)
P_B_given_ R = (P_R_given_B * P_B) / P_R;

% Display the result
fprintf (‘The probability that the red ball came from Bag B is: %.3f\n’, P_B_given_R);

Output

The probability that the red ball came from Bag B is: 0.636

General Matlab Program

% Initial probabilities of selecting each bag
P_A =0.5;
P_B = 0.5;

% Probability of drawing a red ball from each bag
P_R_given_ A = 4 / 10; 7% Bag A: 4 red balls out of 10
P_R_given_ B = 7 / 10; % Bag B: 7 red balls out of 10

% Total probability of drawing a red ball
P_R = (P_R_given_A * P_A) + (P_R_given_B * P_B);

% Applying Baye’s theorem to find P(B | R)
P_B_given_R = (P_R_given_B * P_B) / P_R;

% Display the result
fprintf (‘The probability that the red ball came from Bag B is: %.3f\n’, P_B_given_R);

% Define events and their probabilities
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Probability of Ball's Origin Given It's Red

Probability
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From Bag A From Bag B
Event

events = {‘From Bag A’, ‘From Bag B’};
probabilities = [0.4, 0.636];

% Create a bar chart

figure;

bar(probabilities, ‘FaceColor’, ‘flat’);
set(gca, ‘xticklabel’, events);

% Set colors for each bar
colors = [0.53, 0.81, 0.98; 1, 0.55, 0.41]; 7% Light blue and salmon colors
for i = 1:length(probabilities)
b.CData(i,:) = colors(i,:);
end

% Label the chart

title("Probability of Ball’s Origin Given It’s Red");
xlabel (‘Event’) ;

ylabel (‘Probability’);

ylim([0 1]1);
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% Annotate the bars with probability values

text (1:length(probabilities), probabilities + 0.02,
string(probabilities), ‘HorizontalAlignment’, ‘center’,
‘Color’, ‘black’, ‘FontWeight’, ‘bold’);

% Display the chart
grid on;

Exercise Problem

There are two bags, Bag C and Bag D. Bag C contains 5 green balls and 5 yellow balls,
while Bag D contains 3 green balls and 7 yellow balls. A bag is selected at random, and a
ball is drawn from it. If the ball drawn is green, what is the probability that it came from
Bag D?

Practical No. 4

Aim

To solve a given problem of probability mass function with the help of MATLAB.

Problem

A bag contains 3 red balls and 2 green balls. Two balls are drawn at random without
replacement, and let Y represent the number of red balls drawn.

1. Write down the probability mass function (PMF) of Y.
2. Calculate the expected value (mean) of Y.

Theory

e Step 1: Define the Probability Mass Function (PMF)
The possible values of Y are 0, 1, or 2 (i.e., drawing 0, 1, or 2 red balls). We need to
calculate P(Y = 0), P(Y = 1), and P(Y = 2).

e Step 2: Total Ways to Draw 2 Balls
The total number of ways to draw 2 balls from 5 (3 red + 2 green) is given by:
Total Ways = C(5, 2) = 5! / (2!(5-2)!) =10

e Step 3: Calculate Each Probability
For P(Y = 0): This means both balls drawn are green.
P(Y=0)=C(2,2)/C(5,2)=1/10
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For P(Y 1): This means one red and one green ball is drawn.
P(Y=1)=(C3 1) *C(21))/C(5,2)=(3%2) /10=6/10=3/5
For P(Y 2): This means both balls drawn are red.
P(Y=2)=C(3,2)/C(5,2) =3/10

e Step 4: Summary of PMF
P(Y =0)=1/10
P(Y=1)=3/5
P(Y =2)=3/10

e Step 5: Calculate the Expected Value (Mean) of Y
E(Y)=0*P(Y=0)+1*P(Y=1)+2*P(Y =2)
E(Y) =0+ 0.6+ 0.6 = 1.2

Algorithm

Step 1: Define ball counts: Set num_ red = 3 (number of red balls) and num_ green = 2
(number of green balls). Calculate total_ balls = num_ red + num_ green.

Step 2: Calculate total selection ways: Use total_ ways = nchoosek(total_ balls, 2) to find
the number of ways to choose 2 balls from the total.

Step 3: Calculate probability of drawing 0 red balls: Compute P_Y_ 0 = nchoosek(num_
green, 2) / total_ ways (2 green balls).

Step 4: Calculate probability of drawing 1 red ball: Compute P_Y_ 1 = (nchoosek(num_
red, 1) * nchoosek(num_ green, 1)) / total_ ways (1 red and 1 green ball).

Step 5: Calculate probability of drawing 2 red balls: Compute P_Y_ 2 = nchoosek(num_
red, 2) / total_ ways (2 red balls).

Step 6: Calculate expected value of Y: Use EEY =0*P_Y_ 0+ 1*P_Y_1+2*P_Y_
2 to find the expected value.

Step 7: Display results: Print P_.Y_0, P_.Y_1, P_Y_2, and E_ Y with fprintf.

Program

% Define the number of red and green balls
num_red = 3;
num_green = 2;
total_balls = num_red + num_green;

% Total ways to choose 2 balls from 5
total_ways = nchoosek(total_balls, 2);

% Calculate probabilities
P_Y_0 = nchoosek(num_green, 2) / total_ways; % P(Y = 0)

P_Y_1 = (nchoosek(num_red, 1) * nchoosek(num_green, 1)) / total_ways; % P(Y =
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P_Y_2 = nchoosek(num_red, 2) / total_ways; % P(Y = 2)

% Expected value E(Y)
EY=0xP_Y O+ 1=xP_Y_1+2xP_Y_2;

% Display results

fprintf (‘Probability Mass Function (PMF):\n’);
fprintf (‘P(Y = 0) = %.2f\n’, P_Y_0);

fprintf (‘P(Y = 1) = %.2f\n’, P_Y_1);

fprintf (‘P(Y = 2) = %.2f\n’, P_Y_2);

fprintf (‘Expected Value E(Y) = %.2f\n’, E_Y);

Output

The output of the program for various inputs is as following:

Probability Mass Function (PMF):
P(Y = 0) = 0.10

P(Y = 1) = 0.60

P(Y = 2) = 0.30

Expected Value E(Y) = 1.20

General Matlab Program

% Define the number of red and green balls
num_red = 3;

num_green = 2;

total_balls = num_red + num_green;

% Total ways to choose 2 balls from 5
total_ways = nchoosek(total_balls, 2);

% Calculate probabilities

P_Y_0 = nchoosek(num_green, 2) / total_ways; % P(Y = 0)
P_Y_1 = (nchoosek(num_red, 1) * nchoosek(num_green, 1)) / total_ways; % P(Y = 1)
P_Y_2 = nchoosek(num_red, 2) / total_ways; % P(Y = 2)

% Expected value E(Y)
EY=0xxP_ YO+ 1=xP_Y 1+ 2x*xP_Y_2;

% Display results
fprintf (‘Probability Mass Function (PMF):\n’);
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Olgrobability Mass Function (PMF) of Y (Number of Red Balls Drawn)

0.5

Probability P(Y=y)
o o
w »

o
Mo

0.1

0
0 1 2
Number of Red Balls Drawn ()
fprintf (‘P(Y = 0) = %.2f\n’, P_Y_0);

fprintf (‘P(Y = 1) = %.2f\n’, P_Y_1);

fprintf (‘P(Y = 2) = %.2f\n’, P_Y_2);

fprintf (‘Expected Value E(Y) = %.2f\n’, E_Y);

% Define values and probabilities for Y (number of red balls drawn)
y_values = [0, 1, 2]; % Possible values of Y
probabilities = [0.1, 0.6, 0.3]; % Corresponding probabilities P(Y=y)

% Calculate the expected value for Y
expected_value = sum(y_values .* probabilities);

Exercise problem

A discrete random variable X represents the number of times a coin lands on heads in 3
tosses of a fair coin. Let X take values from 0 to 3, representing the possible outcomes.

1. Write down the probability mass function (PMF) of X.
2. Calculate the expected value (mean) of X.
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Practical No. 5

Aim

To solve a given problem of probability density function with the help of MATLAB.

Problem

Given that X has a probability density function:

f(x)z{ng’ 0§x§1

0, otherwise

1. Find the cumulative distribution function (CDF) F(x) of X.
2. Use F(x) to find P(0.2 < X <0.6).

Theory

e Step 1: Finding the CDF F(x)
To find the CDF, integrate the PDF from 0 to x:

F(z) = / 3t2dt = o
0

Thus, the CDF F(x) is

0, x<0
Flz)y=<2% 0<z<1
1, x>1

e Step 2: Calculating P(0.2 < X < 0.6)

Using the CDF F(x), we can calculate P(0.2 < X < 0.6) as
P(0.2 < X < 0.6)=F(0.6) - F(0.2)= 0.216 - 0.008 = 0.208.
So, P(0.2 < X < 0.6)=0.208.

Algorithm

Step 1: Define the Probability density function (PDF): f = Q(x) 3 * x

Step 2: Define the Cumulative distribution function (CDF) = Q(x) x~ *(:U >= 0&z <=
1)+ (z>1)

Step 3: Compute the CDF values at specific points: F_ 0.6 = F (0.6) and F_. 0.2 =F
(0.2).
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Step 4: Calculate the probability between two values: P =F_0_6 - F_0_ 2.
Step 5: Display the results: Print the values of F(0.6), F(0.2), and the probability P(0.2
\leqgX\leq 0.6) using fprintf.

Program

% Define the PDF as an anonymous function
f =0(x) 3 % x.72;

% Define the CDF by integrating the PDF from O to x
F=0x) x."3 .x (x> 0&x<=1) + (x> 1);

% Compute F(0.6) and F(0.2)
F_0_6 = F(0.6);
F_0_2 = F(0.2);

% Calculate P(0.2 <= X <= 0.6)
P=F0.6 - F_0.2;

% Display the results
fprintf (‘F(0.6) = %.3f\n’, F_0_6);

fprintf (‘F(0.2) = %.3f\n’, F_0_2);
fprintf (‘P(0.2 <= X <= 0.6) = %.3f\n’, P);

Output

The output of the program for various inputs is as following:

F(0.6) 0.216
F(0.2) 0.008
P(0.2 <= X <= 0.6) = 0.208

Exercise Problem

2r 0<x<1

otherwise

Let f(x)=

1. Verify that f(x) is a valid probability density function.
2. Find the probability that X lies between 0.5 and 1, i.e., P(0.5 < X < 1).

Practical No. 6
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Aim

To solve a given problem of moment generating function with the help of MATLAB.

Problem
Given that X has a probability density function:

{23: 0<x<1

0  otherwise

1. Derive the moment generating function My (t) = E[e!X].
2. Use Mx(t) to find the first moment of X.

Theory

e Step 1: Finding the Moment Generating Function M (t)
To find Mx(t), we need to compute the expected value E[e*X]., which is defined as:

—et +tet + 1)
12

oo 1 2
My () = B[] = / et f(2)dz = / e (20)d = 2
—00 0
e Step 2: : Finding E[X] Using Mx(¢)

To find the moments, we need the derivatives of My (t) at t = 0.

Calculate E[X] = M%(t)=0.667.

Algorithm

Step 1: Declare symbolic variable: Use syms to declare t as a symbolic variable.

Step 2: Define the Moment-Generating Function (MGF): Define the MGF function M_X(t)
based on the given formula using t.

Step 3: Differentiate MGF: Take the first derivative of M_X with respect to t and assign
it to M_X_prime.

Step 4: Calculate expected value: Use the limit function to evaluate the derivative at t =
0, which represents E[X], and store this in E_X.

Step 5: Display the expected value: Convert E_X to a numeric format using ‘double‘ and
print it with ‘fprintf".

Program

syms t
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% Define the MGF based on derived formula
M_X = (2 x (-exp(t) + t * exp(t) + 1)) / t72;

% First derivative of M_X with respect to t
M_X_prime = diff(M_X, t);

% Calculate E[X] = M_X’(0)
E_X = limit(M_X_prime, t, 0);

% Display the results
fprintf (‘E[X] = %.3f\n’, double(E_X));

Output

The output of the program for various inputs is as following:

E[X] = 0.667

Exercise problem

Let X be a continuous random variable with the moment generating function:

1
for t <=

Mx(t) = 5

(1— 2ty

1.Use Mx(t) to find E[X]
2.Compute Var(X).

Practical No. 7

Aim

To solve a given problem of Bernoulli random variable with the help of MATLAB.

Problem

Let X be a Bernoulli random variable with probability of success p = 0.3.

1. Write the probability mass function (PMF) of X.

2. Compute E[X] and Var(X).

3. Suppose we perform 5 independent Bernoulli trials with the same p. Calculate the
probability of observing exactly 3 successes.
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Theory

e Step 1: Probability Mass Function (PMF)
For a Bernoulli random variable X with success probability p = 0.3:
=0.3 if r=1
P(X=a2)={P" """ e
1—p=07 ifz=0

Thus, P(X = 1) = 0.3 and P(X = 0) = 0.7.

e Step 2: Expectation and Variance
The expectation E[X] of a Bernoulli random variable is: E[X] = p=0.3.
The variance Var(X) of a Bernoulli random variable is: Var(X) = p(1 - p)= 0.21

e Step 3: Probability of Exactly 3 Successes in 5 Trials
Let Y be the number of successes in 5 independent Bernoulli trials with p = 0.3. Then
Y follows a Binomial distribution: Y &~ Binomial(n = 5, p = 0.3).
The probability of observing exactly 3 successes (i.e.,P(Y = 3)) is given by the bino-
mial formula:
P(Y =k) = C(n, k) *p"k * (1-p) " (n-k)= C(5, 3) ¥ 0.3°3 * (1-0.3) " (5-3)=0.1631

Algorithm

Step 1: Define Probability of Success (‘p’): Set the probability of a single success, ‘p =
0.3

Step 2: Calculate Expectation and Variance: Compute the expectation, ‘E_ X = p’ and
the variance, ‘Var X = p * (1 - p)’, for a single Bernoulli trial.

Step 3: Display Expectation and Variance: Print ‘E[X]" and ‘Var[X]’ to the console using
‘fprintf’.

Step 4: Define Parameters for Binomial Probability: Set the number of trials (‘n = 57)
and the desired number of successes (‘k = 3).

Step 5: Calculate Binomial Probability ‘P (Y = 3)’ and use ‘nchoosek’ to calculate the
binomial coefficient.

Step 6: Display Binomial Probability: Print ‘P(Y = 3)’ to the console using ‘fprintf’.

Program

% Given probability of success
p = 0.3;

% Step 2: Calculate expectation and variance
EX = p;
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Var X = p * (1 - p);

% Display results for expectation and variance
fprintf (‘E[X] = %.2f\n’, E_X);
fprintf (‘Var[X] = %.2f\n’, Var_X);

% Step 3: Calculate probability of exactly 3 successes in 5 trials
n=>5; % number of trials
k = 3; % desired number of successes

% Calculate binomial probability P(Y = 3)
P_Y_eq_3 = nchoosek(n, k) * p°k * (1 - p)~(n - k);

% Display result for P(Y = 3)
fprintf (‘P(Y = 3) = %.4f\n’, P_Y_eq_3);

Output

The output of the program for various inputs is as following:
E[X] = 0.30

Var[X] = 0.21

P(Y = 3) = 0.1323

Exercise Problem

Consider a Bernoulli random variable Z with a success probability of p=0.2.

1.Define the probability mass function (PMF) for Z.

2.Calculate the expected value E[Z] and the variance Var(Z).

3.If you conduct 10 independent Bernoulli trials with this probability, find the probability
of observing at least 3 successes.

Practical No. 8

Aim

To solve a given problem of Binomial random variable with the help of MATLAB.

Problem

A factory produces light bulbs, and 5% of them are defective. A quality control inspector
selects 20 bulbs at random.
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1. What is the probability that exactly 2 bulbs are defective?
2. What is the probability that at most 1 bulb is defective?

Theory

e Step 1: Given information
Probability of a defective bulb, p = 0.05
Number of trials (bulbs selected), n = 20

Let X be the number of defective bulbs among the 20 chosen, which follows a binomial
distribution:

X ~ Binomial(n = 20, p = 0.05)

e Step 2: Probability that exactly 2 bulbs are defective
The probability of exactly k defective bulbs out of n trials is given by the binomial

probability formula:
P(X =k) =C(n, k) * p"k * (1-p) " (n-k)

For k = 2:
P(X =2) =C(20,2) * (0.05)"2 * (0.95)"18 =0.1887

e Step 3: Probability that at most 1 bulb is defective
To find the probability that at most 1 bulb is defective, we need to sum the proba-
bilities of X = 0 and X = 1:
PX<=1)=P(X=0)+PX=1)=0.7358

Algorithm

Step 1: Define Parameters: Set the total number of bulbs selected (‘n = 20’) and the
probability of a bulb being defective (‘p = 0.05").

Step 2: Calculate Probability of Exactly 2 Defective Bulbs: Use ‘binopdf(k, n, p)’ to cal-
culate the probability that exactly 2 bulbs are defective (‘k = 27).

Step 3: Calculate Probability That at Most 1 Bulb Is Defective: Use ‘binopdf’ to find the
probability of having 0 defective bulbs (‘P_X_equals_0’). Similarly, use ‘binopdf’ to find the
probability of having exactly 1 defective bulb (‘P_X_equals_1’).

Step 4: Sum these two probabilities to get the probability of at most 1 defective bulb
(‘P_X_at_most_17).

Step 5: Display Results: Print the probabilities for exactly 2 defective bulbs and at most
1 defective bulb using ‘fprintf’.

Program

% Parameters
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20; % number of bulbs selected
0.05; % probability of a bulb being defective

n

%

% Part 1: Probability that exactly 2 bulbs are defective
k = 2;
P_X_equals_2 = binopdf(k, n, p);

% Part 2: Probability that at most 1 bulb is defective (P(X <= 1))
P_X_equals_O = binopdf(0, n, p); ’% Probability of O defective bulbs
P_X_equals_1 = binopdf(l, n, p); % Probability of 1 defective bulb
P_X_at_most_1 = P_X_equals_0 + P_X_equals_1;

% Display results

fprintf (‘Probability that exactly 2 bulbs are defective: %.4f\n’, P_X_equals_2);
fprintf (‘Probability that at most 1 bulb is defective: %.4f\n’, P_X_at_most_1);

Output

The output of the program for various inputs is as following:

Probability that exactly 2 bulbs are defective: 0.1887
Probability that at most 1 bulb is defective: 0.7358

Exercise Problem

A survey finds that 40% of people prefer coffee over tea. If 12 people are randomly selected,
1. What is the probability that exactly 5 people prefer coffee?
2. What is the probability that at least 8 people prefer coffee?

Practical No. 9

Aim

To solve a given problem of Geometric random variable with the help of MATLAB.

Problem

A fair coin is flipped repeatedly until it lands on heads.
1. What is the probability that the first heads appears on the 4th flip?
2. What is the probability that it takes at most 3 flips to get the first heads?
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Theory

Step 1: Given Information:

Since the coin is fair, the probability of getting heads on any flip is p = 0.5.

Let X be the number of flips until the first heads appears. X follows a geometric
distribution:

X ~ Geometric(p = 0.5)

Step 2: Probability that the first heads appears on the 4th flip
The probability that the first heads appears on the k-th flip in a geometric distribution

1S:
PX=k=U-p k-1 *p

For k = 4:
PX=4)=(1-0.5)"3%0.5=0.5"4 = 0.0625

So, the probability that the first heads appears on the 4th flip is 0.0625.
Step 3: Probability that it takes at most 3 flips to get the first heads

To find the probability that it takes at most 3 flips, we need to find P(X < 3):
P(X <3)=P(X=1)+P(X =2) + P(X = 3)

Using the formula:
PX=k=U-p~&-1)*p

Calculations:
P(X=1)=(0.5)"0*05=0.5
P(X=2)=1(0.5)"1*%05=0.25
P(X=3)=(0.5)"2*0.5=0.125

Summing these:

P(X < 3) = 0.5+ 0.25 + 0.125 = 0.875

So, the probability that it takes at most 3 flips to get the first heads is 0.875.

Algorithm

Step 1: Define Parameters: Set ‘p = 0.5°, representing the probability of getting heads on
each coin flip.

Step 2: Calculate the Probability of First Heads on the 4th Flip.

Step 3: Calculate the Probability of Getting First Heads within the First 3 Flips. Sum
these probabilities to get ‘P_X_at_most_3’, which represents the probability of getting the
first heads within the first 3 flips.

Step 4: Display Results: Print ‘P_X_equals 4’ and ‘P_X_at_most_3’ using ‘fprintf’ to show
the calculated probabilities in a formatted way.
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Program

% Parameters

p = 0.5; 7% Probability of getting heads on each flip

% Part 1: Probability that the
k = 4;
P_X_equals_ 4 = (1 - p)~(k - 1)

first heads appears on the 4th flip

*p;

% Part 2: Probability that it takes at most 3 flips to get the first

P_X_equals_1 = (1 - p)~(1 - 1)
P_X_equals_ 2 = (1 - p)~(2 - 1)
P_X_equals_.3 = (1 - p)~(3 - 1)

P_X_at_most_3 = P_X_equals_1 +

% Display results

* p; % Probability of first heads on
* p; ' Probability of first heads on
* p; % Probability of first heads on

P_X_equals_2 + P_X_equals_3;

fprintf (‘Probability that the first heads appears on the 4th flip: %

P_X_equals_4);

heads

1st flip
2nd flip
3rd flip

.4f\n’ ,

fprintf (‘Probability that it takes at most 3 flips to get the first heads:

%.4f\n’, P_X_at_most_3);

Output

The output of the program for various inputs is as following:

Probability that the first heads appears on the 4th flip: 0.0625
Probability that it takes at most 3 flips to get the first heads: 0.8750

Exercise Problem

A salesperson makes calls to potential clients, and each call has a 20% chance of success
(i.e., closing a sale), independently of other calls.
1. What is the probability that the first successful sale happens on the 6th call?
2. What is the probability that it takes fewer than 4 calls to make the first sale?

Practical No. 10

Aim

To solve a given problem of Poisson random variable with the help of MATLAB.
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Problem

A bookstore experiences an average of 3 customer arrivals per hour (following Poisson
Distribution)

1. What is the probability that exactly 5 customers arrive in an hour?

2. What is the probability that at most 2 customers arrive in an hour?

Theory

e Step 1: Given Information:
The average rate of customer arrivals, A = 3 per hour.
Let X be the number of customers arriving in one hour. X follows a Poisson distri-
bution:

X & Poisson(\ = 3)

e Step 2: Probability that exactly 5 customers arrive in an hour
The probability of observing exactly k events in a Poisson distribution is given by:
P(X =%k) = (A"k* e~ (—=A))/ k!
For k = 5:
P(X =5) =(3"5*e"(-3)) / 5!=0.1008

e Step 3: Probability that at most 2 customers arrive in an hour
To find the probability that at most 2 customers arrive in an hour, we need to calculate
P(X <2):
PX<2)=P(X=0)+PX=1)+ P(X =2)=0.4232
Using the Poisson formula, we calculate each probability:
P(X=0)=(3"0%e"(-3)) / 0!
PX=1)=(3"1*e"(-3)) / 1!
P(X =2)=(3"2¥e"(-3)) / 2!

Algorithm

Step 1: Define Parameters: Set ‘lambda = 3’, representing the average rate of customer
arrivals per hour.

Step 2: Calculate the Probability of Exactly 5 Arrivals in an Hour: Define ‘k = 5’ spec-
ifying that we want the probability of exactly 5 customers arriving in an hour. Use the
‘poisspdf’ function with parameters 'k’ and ‘lambda’ to compute ‘P_X_equals_5’, the prob-
ability of exactly 5 arrivals.

Step 3: Calculate the Probability of at Most 2 Arrivals in an Hour: Compute probabilities
for 0, 1, and 2 customers arriving in an hour using ‘poisspdf’:

Step 4: Display Results: Print ‘P_X_equals_5” and ‘P_X_at_most_ 2" using ‘fprintf’ to dis-
play the calculated probabilities in a formatted manner.
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Program

% Parameters
lambda = 3; % average rate of customer arrivals per hour

% Part 1: Probability that exactly 5 customers arrive in an hour
k = 5;
P_X_equals_5 = poisspdf (k, lambda);

% Part 2: Probability that at most 2 customers arrive in an hour (P(X <= 2))
P_X_equals_O = poisspdf (0, lambda); 7% Probability of O customers arriving
P_X_equals_1 = poisspdf (1, lambda); % Probability of 1 customer arriving
P_X_equals_2 = poisspdf(2, lambda); 7% Probability of 2 customers arriving

P_X_at_most_2 = P_X_equals_0 + P_X_equals_1 + P_X_equals_2;

% Display results

fprintf (‘Probability that exactly 5 customers arrive in an hour: %.4f\n’,
P_X_equals_5);

fprintf (‘Probability that at most 2 customers arrive in an hour:%.4f\n’,
P_X_at_most_2);

Output

Probability that exactly 5 customers arrive in an hour: 0.1008
Probability that at most 2 customers arrive in an hour: 0.4232

Exercise problem

A doctors office receives an average of 6 patients per hour.
1. What is the probability that no patients arrive in a particular hour?
2. What is the probability that at least 4 patients arrive in a particular hour?

Practical No. 11

Aim
To solve a given problem of Uniform distribution with the help of MATLAB.
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Problem

A continuous random variable X is uniformly distributed on the interval [2, §].
1. Find the probability that X takes a value between 3 and 6.

2. Calculate the expected value and variance of X.

3. Find the probability that X is greater than 7.

Theory

e Step 1: Setting Up the Uniform Distribution
Since X is uniformly distributed on [2, 8], the probability density function (PDF) of
X is given by:
fx)=1/(b-a)=1/(8-2)=1/6
for x in [2, 8].

e Step 2: Probability that X takes a value between 3 and 6
The probability that X lies between 3 and 6 can be calculated as:
P(3<X<6) = [, f(x)de = [; Lda

This integral simplifies to:
PB3<X<6)=(1/6)*(6-3)=(1/6) *3=0.5

e Step3: Expected Value and Variance of X
For a uniform random variable X on [a, b], the expected value E[X] and variance
Var(X) are:
EX]=(a+b)/2=(2+8)/2=5
Var(X) = ((b-a)"2)/ 12 = ((8-2)"2) /12 =36 / 12 =3

e Step4: Probability that X is greater than 7
The probablhty that X is greater than 7 is:
P(X > 7) fs d:B—f871dx
ThlS snnphﬁes to:
PX>T7)=(1/6)*(8-7)=(1/6) *1 =1/6 ~ 0.1667

Algorithm

Step 1: Define the Interval: Set ‘a = 2’ and ‘b = 8’, defining the interval ‘[a, b]” over which
the uniform distribution for X is defined.

Step 2: Calculate the Probability that X is Between 3 and 6.

Step 3: Calculate Expected Value and Variance.

Step 4: Calculate the Probability that X is Greater than 7.

Step 5: Display Results.
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Program

% Define the interval [a, b]
a = 2;
b = 8;

% Part 1: Probability that X takes a value between 3 and 6
p-3.6=(6-3)/ (b - a);

% Part 2: Expected value and variance
expected_value = (a + b) / 2;
variance = (b - a)"2 / 12;

% Part 3: Probability that X is greater than 7
p_greater_ 7 = (b - 7) / (b - a);

% Display results

fprintf (‘Probability that X is between 3 and 6: %.4f\n’, p_3_6);
fprintf (‘Expected value of X: %.2f\n’, expected_value);
fprintf(‘Variance of X: %.2f\n’, variance);

fprintf (‘Probability that X is greater than 7: %.4f\n’, p_greater_7);

Output

The output of the program for various inputs is as following:

Probability that X is between 3 and 6: 0.5000
Expected value of X: 5.00

Variance of X: 3.00

Probability that X is greater than 7: 0.1667
Exercise problem

A random variable Z is uniformly distributed between 0 and 10.

1. What is the probability density function (PDF) of Z7
2. Calculate the probability that Z falls between 2 and 8.
3. Determine the median value of Z.

Practical No. 12

Aim
To solve a given problem of exponential random variable with the help of MATLAB.
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Problem

The time until a machine fails is modeled by an exponential random variable with a mean
of 5 hours.

1. Find the probability that the machine fails within 2 hours.

2. Find the probability that the machine operates for more than 6 hours before failing.

Theory

e Step 1: Setting Up the Exponential Distribution
For an exponential random variable T with mean 4 = 5 hours, the rate parameter A
is:
A=1/p=1/5=02
The probability density function (PDF) for an exponential distribution is:
f(t) = X ®exp(-A * t) for t < 0.

e Step 2: Probability that the Machine Fails Within 2 Hours
The probability that T < 2 is given by the cumulative distribution function (CDF):
P(T <2)=1-exp(-A*2)=1-exp(-0.2 *2)
Substitute A = 0.2:
P(T <2)=1-exp(-0.4) = 0.3297

e Step 3: Probability that the Machine Operates for More Than 6 Hours
The probability that T > 6 is:
P(T > 6) = exp(-A * 6) = exp(-0.2 * 6)
Substitute A = 0.2:
P(T > 6) = exp(-1.2) ~ 0.3012.

Algorithm

Step 1: Define the Rate Parameter: Set ‘lambda = 1 / 5’) representing the failure rate
(average time between failures is 5 hours).

Step 2: Calculate the Probability that the Machine Fails within 2 Hours.

Step 3: Calculate the Probability that the Machine Operates for More than 6 Hours.
Step 4: Display Results.

Program

% Define the rate parameter lambda
lambda = 1 / 5;

% Part 1: Probability that the machine fails within 2 hours
p_within_2 = 1 - exp(-lambda * 2);
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% Part 2: Probability that the machine operates for more than 6 hours
p_greater_6 = exp(-lambda * 6);

% Display results
fprintf (‘Probability that the machine fails within 2 hours: %.4f\n’,
p_within_2);

fprintf (‘Probability that the machine operates for more than 6 hours: %.4f\n’,
p_greater_6) ;

Output

The output of the program for various inputs is as following:

Probability that the machine fails within 2 hours: 0.3297
Probability that the machine operates for more than 6 hours: 0.3012

Exercise Problem

The lifetime of a light bulb is modeled by an exponential random variable with a mean
lifetime of 1000 hours.

1. Calculate the probability that the light bulb lasts more than 1200 hours.

2. Find the probability that the light bulb fails between 800 and 1200 hours.
3. Determine the variance of the light bulb’s lifetime.

Practical No. 13

Aim

To solve a given problem of Gamma random variable with the help of MATLAB.

Problem

Let Y be a Gamma random variable with shape parameter o« = 5 and scale parameter § =
1.5.

1. Calculate the probability P(Y < 7).

2. Determine the probability P(6 <Y < 10).
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Theory

e Step 1: The Gamma distribution with shape parameter o and scale parameter 3 has

the probability density function:
—y

a—1

fly) = yﬂa—lfj, where I'(«) is the Gamma function.

e Step 2: Calculate P(Y < 7)

The cumulative distribution function (CDF) of a Gamma random variable can be

used to calculate P(Y < 7).

e Step 3: Calculate P(6 <Y < 10)

This is the probability that Y falls between 6 and 10, which can be expressed as: P(6

<Y < 10) = P(Y < 10) - P(Y < 6).

Using the CDF again, we can calculate P(Y < 10) and P(Y < 6).

Algorithm

Step 1: Define Parameters: Set ‘alpha = 5" and ‘beta = 1.5’, which are the shape and

scale parameters for the Gamma distribution.

Step 2: Calculate P(Y<T7): Use ‘gamcdf (7, alpha, beta)’ to calculate ‘P_Y_leq.7’, the

probability that Y takes a value less than or equal to 7.

Step 3: Calculate P (6 <Y < 10): Calculate ‘P_Y_leq_10" as ‘gamcdf(10, alpha, beta)’,

the probability that Y is less than or equal to 10.

Step 4: Display Results: Print ‘P_Y leq_7" and ‘P_6_leq_Y leq_10’ using ‘disp’ to show the

calculated probabilities in a formatted way.

Program

% Given parameters

alpha = 5; % Shape parameter
beta = 1.5; % Scale parameter

% Part 1: Calculate P(Y <= 7)
P_Y_leq_7 = gamcdf(7, alpha, beta);

% Part 2: Calculate P(6 <= Y <= 10)
P_Y_leq_10 = gamcdf (10, alpha, beta);
P_Y_leq_6 = gamcdf(6, alpha, beta);
P_6_1leq_Y_leq_10 = P_Y_leq_10 - P_Y_leq_6;

% Display results
disp("Part 1: P(Y <= 7) =" + P_Y_leq._7);
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disp("Part 2: P(6 <= Y <= 10) = " + P_6_leq_Y_leq_10);

Output

Part 1: P(Y <= 7) = 0.49921
Part 2: P(6 <= Y <= 10) = 0.42321

Exercise problem

A machine part has a lifetime that follows a Gamma distribution with a shape parameter
of 4 and a mean lifetime of 12 hours.

1. Find the scale parameter .

2. Calculate the probability that the part lasts more than 10 hours.

3. If the part has already lasted 10 hours, find the probability that it will last an additional
5 hours.

Practical No. 14

Aim

To solve a given problem of Normal distribution with the help of MATLAB.

Problem

The scores on a standardized exam are normally distributed with a mean of 500 and a
standard deviation of 100.

Let X represent the exam scores.

1. What is the probability that a randomly selected student scores above 6007

2. What is the probability that a student scores between 450 and 5507

Theory

e Step 1: Given data
Mean p = 500, Standard deviation o = 100
For a normally distributed random variable X, we can use the Z-score formula to
standardize the problem:

Z=(X-p) /o

e Step 2: Probability that a student scores above 600
To find P(X > 600), we need the Z-score for X = 600:
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Z = (600 - 500) / 100 = 1. Now,P(X > 600) = P(Z > 1). We can use standard
normal distribution tables to find this probability.

From the standard normal table:
P(Z > 1) =~ 0.1587.

e Step 3: Probability that a student scores between 450 and 550
We want to find P(450 < X < 550). Well calculate the Z-scores for both bounds: For

X = 450:
Z = (450 - 500) / 100 = -0.5.
For X = 550:

7 = (550 - 500) / 100 = 0.5.
Now, P(450 < X < 550) = P(-0.5 < Z < 0.5).

Using the standard normal table:
P(-0.5 < Z < 0.5) =~ 0.3829.

Algorithm

Step 1: Initialize Parameters: Set mean (‘'mu = 500’) and standard deviation (’sigma =
1007).

Step 2: Calculate Probability for Score Above 600.

a. Set the score threshold to 600.

b. Calculate the Z-score for 600.

c. Use the cumulative distribution function (CDF) to find the probability of scoring above
600.

Step 3: Calculate Probability for Score Between 450 and 550.

a. Set the lower bound to 450 and upper bound to 550.

b. Calculate the Z-scores for both 450 and 550.

c. Use the CDF to find the probability of scoring between 450 and 550.

Step 4: Display Results: Print the probabilities calculated for both cases.

Program

% Given parameters
mu = 500;

sigma = 100;

% 1. Probability that a student scores above 600

X1 = 600;
Z1l = (X1 - mu) / sigma;
P1 = 1 - normcdf(Z1);
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fprintf (‘1. Probability that a student scores above 600: %.4f\n’, P1);

% 2. Probability that a student scores between 450 and 550
X2_lower = 450;

X2_upper = 550;
Z2_lower = (X2_lower - mu) / sigma;
Z2_upper = (X2_upper - mu) / sigma;

P2 = normcdf (Z2_upper) - normcdf(Z2_lower);

fprintf (‘2. Probability that a student scores between 450 and 550: %.4f\n’, P2);

Output

The output of the program for various inputs is as following:

Probability that a student scores above 600: 0.1587
Probability that a student scores between 450 and 550: 0.3829

Exercise Problem

The lifetime of a particular machine component is normally distributed with a mean of 2000
hours and a standard deviation of 150 hours. Let X represent the lifetime of the component.
1. What is the probability that a randomly selected component lasts less than 1850 hours?

2. What is the probability that a component lasts between 1900 and 2100 hours?
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Practical No. 15

Aim
To solve a given problem of joint probability distribution with the help of MATLAB.

Problem

Let X and Y be two discrete random variables with the following joint probability distri-
bution:

Y=1

I
=N =l
O O O =
== NN
O O O =
i el e O]

X
X
X

Il
W N -
O O O

1. Find the marginal distributions of X and Y.
2. Calculate P(X =2|Y =2).
3. Determine if X and Y are independent.

Theory

e Step 1: Marginal Distributions of X and Y
1. Marginal distribution of X:

To find the marginal probability of X, sum the joint probabilities across each row (for
all values of Y):

1)=01+02+01=04
(X=2) =02+ 01+ 0.1 =0.4
(X=3)=0.1+01+01=03

So, the marginal distribution of X is:
P(X) ={0.4, 0.4, 0.3}

2. Marginal distribution of Y:

To find the marginal probability of Y, sum the joint probabilities across each column
(for all values of X):
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P(Y=1) =01+ 02+ 01 =04
P(Y=2) =02+ 0.1+ 0.1 =0.4
P(Y=3)=0.1+01+01=03

So, the marginal distribution of Y is:
P(Y) = {0.4, 0.4, 0.3}

e Step 2: Calculate P(X =2 |Y = 2)
The conditional probability P(X=2 | Y=2) is calculated using the formula:
P(X=2|Y=2) = P(X=2, Y=2) / P(Y=2)
From the table, P(X=2, Y=2) = 0.1 and P(Y=2) = 0.4.

P(X=2|Y=2)=01/04=025

e Step 3: Determine if X and Y are Independent

To check if X and Y are independent, we need to verify if P(X=x, Y=y) = P(X=x)
*P(Y=y) for all pairs (x, y).

Let’s check a few cases:

For X=1 and Y=1:

P(X=1, Y=1) = 0.1 and P(X=1) * P(Y=1) = 0.4 * 0.4 = 0.16
Since 0.1 # 0.16, X and Y are not independent.

Algorithm

Step 1: Define Joint Probability Matrix.

Step 2: Calculate Marginal Distribution of X.

Step 3: Calculate Marginal Distribution of Y.

Step 4: Calculate Conditional Probability P(X=2 | Y=2).
Step 5: Check for Independence.
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Program

% Define the joint probability distribution matrix
P_XY = [0.1 0.2 0.1;

0.2 0.10.1;
0.1 0.1 0.1];

% Calculate the marginal distribution of X
P_X = sum(P_XY, 2); % Sum along rows
disp(‘Marginal distribution of X:7’);

disp(P_X);

% Calculate the marginal distribution of Y
P_Y = sum(P_XY, 1); % Sum along columns
disp(‘Marginal distribution of Y:’);
disp(P_Y);

% Calculate P(X=2 | Y=2)

P_X2_Y2 = P_XY(2,2); % P(X=2, Y=2)
P_Y2 = P_Y(2); h P(Y=2)
P_X_given Y = P_X2_Y2 / P_Y2;
disp(‘P(X=2 | Y=2):");
disp(P_X_given_Y);

% Check independence by comparing P(X=x, Y=y) with P(X=x) * P(Y=y)
independence_check = false;
for 1 = 1:3
for j = 1:3
if abs(P_XY(i,j) - P_X(i) * P_Y(j)) > le-6
independence_check = true;
break;
end
end
end

if independence_check

disp(‘X and Y are not independent.’);
else

disp(‘X and Y are independent.’);
end

Output

Marginal distribution of X:
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0.4000
0.4000
0.3000

Marginal distribution of Y:
0.4000 0.4000 0.3000

P(X=2 | Y=2):
0.2500

X and Y are not independent.

Exercise problem

Let X and Y be jointly distributed random variables with the joint probability function:
P(X=x,Y=y)=(x+y)/30, x,y=1,2,3.

1. Verify that this is a valid probability distribution.
2. Find the expected values E(X)) and E(Y).
3. Calculate the covariance Cov(X,Y).

Practical No. 16

Aim

To solve a given problem of Joint probability with the help of MATLAB.

Problem

A fair six-sided die and a fair four-sided die are rolled. Let X be the outcome of the six-sided
die, and Y be the outcome of the four-sided die.

1. Find the joint probability P(X = 2, Y = 3).

2. What is the probability that the sum of the two dice is 77

3. Are X and Y independent?

Theory

e Step 1: To find P(X =2, Y = 3)
Since the dice are fair, each outcome is equally likely. There are 6 4 = 24 possible
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outcomes when both dice are rolled.

The probability of any specific outcome (X = x, Y =y) is:
PX=x,Y=y)=1/24

Thus,

P(X=2Y =3)=1/24 ~0.0417

e Step 2: Probability that the Sum of the Two Dice is 7
The possible pairs (X, Y) where the sum is 7 are: (X =3,Y =4), (X =4,Y = 3),
(X=5Y=2), (X=6,Y =1). Each of these pairs has a probability of 1/24.
So,
PX+Y=7)=4 1/24 =1/6 =~ 0.1667

e Step 3: Are X and Y Independent?
To check independence, we need to verify whether P(X =x, Y =y) = P(X =x) P(Y
=y) for all values of x and y.
Since each outcome is equally likely and both dice are fair:
PX=x)=1/6forx=1,2 34,56
P(Y=y)=1/dfory=12 3 4.

The joint probability P(X = x, Y =y) = 1/24.
For independence, we would need P(X = x) P(Y =y) =1/6 1/4 = 1/24, which
holds true for all x and y. Therefore, X and Y are independent.

Algorithm

Step 1: Calculate total outcomes.

Step 2: Compute P(X = 2, Y = 3) and display it.

Step 3: Compute P (X + Y = 7) and display it.

Step 4: Check if X and Y are independent by comparing joint probabilities.
Step 5: Display the result of the independence check.

Program
% Define the probabilities
total_outcomes = 6 * 4;

prob_X2_Y3 = 1 / total_outcomes;

% Display Part 1: P(X=2, Y=3)
fprintf (‘P(X=2, Y=3) = %.4f\n’, prob_X2_Y3);

% Part 2: Calculate probability of sum equal to 7
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favorable_outcomes_sum7 = 4;
prob_sum7 = favorable_outcomes_sum7 / total_outcomes;

% Display Part 2: P(X + Y = 7)
fprintf(‘P(X + Y = 7) = %.4f\n’, prob_sum7);

% Part 3: Independence check
prob_ X =1/ 6;
prob_ Y = 1 / 4;
joint_prob = prob_X * prob_Y;

% Check if joint probability matches the outcome probability
is_independent = (joint_prob == prob_X2_Y3);

% Display Part 3: Independence
if is_independent

fprintf (‘X and Y are independent.\n’);
else

fprintf (‘X and Y are not independent.\n’);
end

Output
P(X=2, Y=3) = 0.0417

P(X+Y=17) = 0.1667
X and Y are independent.

Exercise problem

Two fair dice are rolled, one with 8 sides (numbered 1 to 8) and one with 6 sides (numbered
1 to 6). Let A represent the outcome of the 8-sided die and B represent the outcome of the
6-sided die.

1. Find the joint probability P(A=5, B=2).

2. What is the probability that the sum of the two dice is 97

3. Are A and B independent?

Practical No. 17

Aim
To solve a given problem of Bivariate variables with the help of MATLAB.
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Problem

Let X and Y be continuous random variables with joint probability density function (PDF):

clx+y), 0<zx<1,0<y<l1

0, otherwise

fxy(z,y) = {

1. Determine the value of ¢ such that fxy(z,y) is a valid joint PDF.
2. Find the marginal probability density functions fy(x) and fy(y).
3. Calculate the conditional density fxy(z |y) for 0 <y < 1.

Theory

e Step 1: To find the value of ¢ so that fyy(z,y) is a valid joint PDF
To ensure that fxy(z,y) is a valid joint probability density function, the integral over
all possible values of x and y must equal 1:

1 1
/ / Fry (e, y)dady = 1
0 0

Since fxy(z,y) = c(x +y) within the range 0 <2 <1, 0 <y < 1, we can set up the

integral:
1,1
//c(:r;—l—y)dxdyzl
0o Jo

c=1.

Evaluating this integral:

Thus, the joint PDF is: fxy(z,y)=(x+y),0<z <1, 0<y<1.

e Step 2: To find the Marginal PDFs fx(z) and fy(y).
1. Find fx(z):

The marginal PDF fx(x) is obtained by integrating the joint PDF over y:
fx<l’) = fol fX,Y(fE,y>dy - fol(m + y)dy =+ %70 <z <L

2. Find fy(y):

The marginal PDF fy(y) is obtained by integrating the joint PDF over y:
1 1
FrW) = [y fxy(zy)dy = [f(z+y)dy=y+350<y<L
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e Step 3: To find the Conditional PDF fxy (x| y)

The conditional PDF fxy(x | y) is defined as:

fX,Y<x7y) o z +y

fxy(z|y) =

Algorithm

)  y+3

0<y<l.

Step 1: Define symbolic variables x, y, and c.

Step 2: Define joint PDF.
Step 3: Compute normalization constant.

Step 4: Give the output the value of the normalization constant c.

Step 5: Substitute ¢ into PDF.
Step 6: Print marginal PDF of X.
Step 7: Compute marginal PDF of Y.

Step 8: Compute conditional PDF of X given Y.

Program

syms X y C
fxy = ¢c * (x + y);

integral_xy = int(int(fxy, x, 0, 1),

c_val = solve(integral_xy == 1, c);

y, 0, 1);

fprintf (‘The value of ¢ is: %f\n’, double(c_val));

fxy = subs(fxy, c, c_val);

fx = int(fxy, y, 0, 1);

fprintf(‘Marginal PDF f_X(x) = %s\n’
fy = int(fxy, x, 0, 1);
fprintf (‘Marginal PDF f_Y(y) = %s\n’

fxy_val = subs(fxy, c, c_val);
fX_given_ Y = fxy_val / fy;
fprintf (‘Conditional PDF f_X|Y(xly)

Output

The value of c is: 1.000000
Marginal PDF f_X(x) = x + 1/2

, Ix);

, Ty);

= %s\n’, simplify(fX_given_Y));
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Marginal PDF f_Y(y) =y + 1/2
Conditional PDF f_X|Y(xly) = (x + y)/(y + 1/2)

Exercise Problem
Suppose X and Y are continuous random variables with the joint probability density func-
tion given by:

ce” @2 x>0, y>0

0, otherwise

Ixy(z,y) :{

1. Determine the constant c to ensure that fxy(x,y) is a valid joint PDF.
2. Find the marginal probability density functions fx(z) and fy(y).
3. Calculate the conditional density fy|x(y | x) for x > 0.

Practical No. 18

Aim

To solve a given problem of Markovs inequality with the help of MATLAB.

Problem

Suppose X is a non-negative random variable with an expected value E[X] = 5.
1. Use Markov’s inequality to find an upper bound for Pr(X > 10).
2. Use the same inequality to find an upper bound for Pr(X > 20).

Theory
e Step 1: Markov’s Inequality states that for any non-negative random variable X and
any a > 0,
EX
Pr(X >a) < X]
a

We are given: E[X] =5

e Step 2: Upper bound for Pr(X > 10)
Using Markov’s inequality:

Pr(X >10) < E[X] /10 =5 / 10 = 0.5.

So, the probability that X > 10 is at most 0.5.
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e Step 3: : Upper bound for Pr(X >20)
Using Markov’s inequality again:

Pr(X >20) < E[X] /20 =5 / 20 = 0.25.

So, the probability that X > 20 is at most 0.25.

Algorithm

Step 1: Set the Expected Value.

Step 2: Define Threshold Values.
Step 3: Apply Markovs Inequality
Step 4: Compute Upper Bound for al.
Step 5: Compute Upper Bound for a2.
Step 6: Display the Results.

Program

% Given expected value
E_.X =5;

% Values of a for which we want to compute the upper bound
al = 10;
a2 = 20;

% Using Markov’s inequality to compute upper bounds
P_X_geq_al = E_X / al;
P_X_geq_a2 = E_X / a2;

% Display the results

fprintf (‘Upper bound for P(X >= 10) using Markov’’s inequality: %.2f\n’,
P_X_geq_al);

fprintf (‘Upper bound for P(X >= 20) using Markov’’s inequality: %.2f\n’,
P_X_geq_a2);

Output

Upper bound for P(X >= 10) using Markov’s inequality: 0.50
Upper bound for P(X >= 20) using Markov’s inequality: 0.25
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Exercise Problem

Let Y be a non-negative random variable with E[Y]=8.
1. Use Markov’s inequality to find an upper bound for Pr(Y > 16).
2. Use the same inequality to find an upper bound for Pr(Y > 24).

Practical No. 19

Aim

To solve a given problem of modes of convergence with the help of MATLAB.

Problem

Let (X,)n>1 be a sequence of random variables defined by (X,,) = £.
1. Calculate P(| X,, —0|>¢) for e = 0.1, 0.05, and 0.01 with n = 10, 20, and 50.
2. Determine if X, converges to 0 in probability as n oc.

Theory

e Step 1: Since X,, = 1/n, we have:
P(| X,—0|>¢)=P(1/n|>e¢).

e Step 2: This inequality can be simplified as follows:
P(1/n > ¢€) = 1if 1/n > €, otherwise P(1/n > ¢€) = 0.

For each value of n and ¢, we can evaluate whether P(| X,, —0|>¢€) =1 or 0.

Algorithm

Step 1: Define input values.

Step 2: Initialize Probability matrix.
Step 3: Loop through each n and e.
Step 4: Display results.

Program

% Define the parameters
n_values = [10, 20, 50];
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epsilon_values = [0.1, 0.05, 0.01];

% Initialize a matrix to store the probabilities
probabilities = zeros(length(n_values), length(epsilon_values));

% Loop through each combination of n and epsilon
for i = 1:length(n_values)
n = n_values(i);
Xn=1/n;
for j = 1:length(epsilon_values)
epsilon = epsilon_values(j);
if X_n > epsilon
probabilities(i, j)
else
probabilities(i, j)
end

1; % Probability is 1 if X_n > epsilon

0; % Probability is O otherwise

end
end

% Display the results

fprintf (‘Results for P(|X_n - 0| > epsilon):\n’);

fprintf (¢ n  epsilon=0.1 epsilon=0.05 epsilon=0.01\n’);
for i = 1:length(n_values)

fprintf(‘%4d  %8.2f %8.2f %8.2f\n’, n_values(i),
probabilities(i, :));

end

Output

The output of the program for various inputs is as following:

Results for P(|X_n - 0| > epsilon):
n epsilon=0.1 epsilon=0.05 epsilon=0.01

10 0.00 1.00 1.00
20 0.00 0.00 1.00
50 0.00 0.00 1.00

Exercise Problem
Let (Y,)n>1 be a sequence of random variables defined by Y,, = %

1. Calculate P(| Y,, — 0 |> ¢) for e = 0.1, 0.05, and 0.01 with n=>5, 10, and 20.
2. Determine if Y,, converges to 0 in probability as n oco.
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Practical No. 20

Aim

To solve a given problem of weak and strong laws of Large numbers with the help of

MATLAB.

Problem

A factory produces light bulbs, and the lifetime of each light bulb (in hours) is a random
variable with a mean of 1,000 hours and a standard deviation of 100 hours. A random
sample of 200 light bulbs is selected. Using the Weak Law of Large Numbers, estimate the
probability that the sample average lifetime is within 10 hours of the expected lifetime.

Theory
We can solve this using Chebyshevs Inequality.

e Step 1: Define the Range of Sample Mean

We are asked to find the probability that the sample mean is within 10 hours of the
population mean. This means we want:

P(| X - |< 10)
e Step 2: Use Chebyshev’s Inequality

For a random sample mean X based on n samples, Chebyshev’s inequality states:

P(| X —p|> k) < o*\(nk?)

where:

o? is the population variance

n is the sample size

k is the desired bound (in this case, 10 hours)

e Step 3: Calculate the Variance of the Sample Mean
The variance of the sample mean, VarX, is given by:
VarX = %2
Given ¢ = 100 and n = 200,

we find: VarX = 100 / 200 = 10000 / 200 = 50
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e Step 4: Apply Chebyshev’s Inequality
We want P(] X — p |< 10), which is the complement of P(] X — pu |> 10).
Using Chebyshevs inequality:
P(| X — p|>10) <50/10% = 50/100 = 0.5

Thus_:
P(|X—-pu|l<10)>1-05=0.5

This implies that there is at least a 50 % probability that the sample mean will be within
10 hours of the expected lifetime.

Algorithm

Step 1: Define the parameters for the mean (‘mu’), standard deviation (‘sigma’), sample
size (‘n’), and the distance from the mean (‘k’).

Step 2: Calculate Chebyshev’s Bound.

Step 3: Simulate Sample Means.

Step 4: Run Simulations.

Program

% Parameters

mu = 1000; % Mean lifetime in hours
sigma = 100; % Standard deviation in hours
n = 200; % Sample size

k = 10; % Distance from the mean

% Using Chebyshev’s Inequality
var_Xbar = sigma”2 / n;
chebyshev_bound = var_Xbar / k~2;
prob_within_k = 1 - chebyshev_bound;

fprintf (‘Probability (by Chebyshev’s inequality) that sample mean is within
%d hours: %.2f\n’, k, prob_within_k);

% Simulation to verify Chebyshev’s bound
num_simulations = 10000; % Number of simulations
sample_means = zeros(num_simulations, 1);

for i = 1:num_simulations
sample = normrnd(mu, sigma, [1, n]); 7% Generate a sample of size n
sample_means(i) = mean(sample); % Calculate sample mean

end
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Output

The output of the program for various inputs is as following:

Probability (by Chebyshev’s inequality) that sample mean is within 10 hours:
0.50

Exercise Problem

The height of adult males in a certain city is normally distributed with a mean of 175 cm
and a standard deviation of 10 cm. Suppose a random sample of 100 adult males is taken.
Using the Weak Law of Large Numbers, estimate the probability that the sample average
height is within 1.5 cm of the mean.
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Analytic Geometry

Practical No. 1

Aim

To solve the given problems with the help of MATLAB.

Problem

Find the projection of the vector @ = 2¢ + 37 + 2k on the vector b =i + 27 + k.

Theory

(@.b)

. A C T

As (@.b) = (20 +3j +2k).(1 + 2j + k) and [b] = V12 + 2% + 12 = V/6,

Hence, the projection of the vector @ on bis = (II%II)) = \1/—%.

The projection of the vector @ on b=

Algorithm

Step 1: Define vectors a@ and 5;
Step 2: Calculate the dot product a - 5;

Step 3: Calculate the magnitude |b];

Step 4: Compute the projection of @ on b as %
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Program

The following MATLAB script implements the algorithm.
=[2,3,2];

b =1, 2, 1];

dot_ab = dot(a, b);

dot_bb = dot(b, b);

proj_a_on_b = dot_ab/(sqrt(dot_bb));

disp(’Projection of a on b:’);

disp(proj_a_on_b);

Output

The output of the program is as follows:
Projection of a on b:

4.082482

Exercise

Exercise 1: Find the projection of the vector = 41 —I—j — 3k on the vector q =1 —|—] + 2k.
Exercise 2: Find the projection of the vector @ = 2@4—3] —|—5k: on the vector b = —2—|—4j k:
Exercise 3: Find the projection of the vector @ = —i+2j+k on the vector 7 = 3i —4j + k.

Practical No.

Problem
Find the direction cosine of the vector joining the points A(1,2,-3) and B(-1,-2,1) directed
from A to B.
Theory
The vector AB = B — A. Therefore, AB = —2i — 47 + 4.
AB| = VITT6 516 = V36 = 6.

irecti i Big— AB _ (=L =2 2
Hence, the direction cosine of AB is = v ( 5 3 3) :

Algorithm

Step 1: Define points A and B;

Step 2: Calculate vector AB=B— A;
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Step 3: Calculate the magnitude |AB];

AB

Step 4: Determine direction cosines as B

Program

The following MATLAB script implements the algorithm.
A =11, 2 -3];

B = [_17 '27 1]7

AB =B - A;

magnitude_AB = norm(AB);

cos_alpha =AB(1) /magnitude_AB;

cos_beta = AB(2) /magnitude_AB;

cos_gamma = AB(3) /magnitude_AB;

disp(’'Direction Cosines of the vector from A to B:’);

disp(['cos(alpha) = ’, num2str(cos_alpha)]);
disp(['cos(beta) = ’, num2str(cos_beta)]);
disp(['cos(gamma) = ’, num2str(cos_gammal)]);
Output

The output of the program is as follows:
Direction Cosines of the vector from A to B:
cos(alpha) = —0.33333

cos(beta) = —0.66667

cos(gamma) = 0.66667

Exercise
Exercise 1: Find the direction cosine of the vector joining the points A(1,2,3) and
B(—1,-2,1) directed from A to B.

Exercise 2: Find the direction cosine of the vector joining the points A(1,2,—3) and
B(—1,-2,1) directed from A to B.

Practical No. 3

Problem

Find the radius and center of the sphere 222 + 2y? + 222 4 4o + 42 — 44 = 0.
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Theory
The general equation of the sphere is
(x—a)* +(y—b)*+ (2 —)* =77,
where (a, b, ¢) is the center of the sphere, and r is radius. Given the equation

20 + 22 + 222 +dr+ 42 —44=0

20 + 4o + 2% + 222 +42 — 44 =0
42+ 4+ 22 +22-22=0

P2+l -1+ +224224+41-1-22=0
(@ 4+ 1)+ (y— 0 + (z + 1)* = (V24)°
center = (—1,0,—1),

radius = v/24.

FELy

Algorithm

Step 1: Use MATLAB symbolic variables to simplify the equation to standard form,;

Step 2: Rewrite as (z + 1)+ (y —0)* + (2 + 1) = \/242;

Step 3: Identify the center as (—1,0, —1) and radius as v/24;

Step 4: Display results using disp().

Program

The following MATLAB script implements the algorithm.
Syms X y z

eq = x*x + y*y + z*z + 2%x + 2%z - 22 == 0;

eq =eq /2

eq = subs(eq, x*x + 2*x, (x + 1)*(x + 1) - 1);
eq = subs(eq, z*z + 2%z, (z + 1)*(x + 1) - 1);
eq = simplify(eq + 2);

center = [-1, 0, -1];

radius = sqrt(24);

disp(’Simplified Equation:’);

disp(eq);
disp("Center of the sphere:’);
disp(center);

disp("Radius of the sphere:’);
disp(radius);
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Output

The output of the program is as follows:
Simplified Equation:
(r4+1)2+(z+1)2*+y?==24

Center of the sphere:

(—=1,0,—1)

Radius of the sphere:

4.8990

Exercise

Exercise 1: Find the radius and center of the sphere 22 + y? + 22 — 22 = 0.
Exercise 2: Find the radius and center of the sphere 322 4 3y? + 322 + 62 4 62 — 66 = 0.
Exercise 3: Find the radius and center of the sphere 22 + y? + 22 + 2 + 2 — 10 = 0.

Practical No. 4

Problem

Find the vector equation of the line

r+3 y—-5 z2+6

2 4 4
Theory
Let t be any variable, such that

x+3_y—5_z—i—6_t

2 4 4

— r =2t—3,
y =4t + 5,
z =4t — 6.

Hence, the vector equation is

—

T :U%—Fy;—l—zl%
(

—30 457 — 6k) + (21 + 45 + 4k).

Algorithm

Step 1: Set equal parts to a parameter ¢ to express x, y, and z in terms of ¢;

Step 2: Write the vector equation 7= P+t-d
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Program

The following MATLAB script implements the algorithm.
syms t;

P =[-3,5,—6];

d=12,4,2];

rt=P+txd,

disp(’The vector equation of the line is:’);

disp(’r(t) =");

disp(r_t);

Output

The output of the program is as follows:
The vector equation of the line is:
r(t) =[2«t—3,4%t+52xt— 0

Exercise

Exercise 1: Find the vector equation of the line

r—5 y—1 z+41
-2 4 3

Practical No. 5

Problem

Find the directional derivatives of ) = 3x?yz—4y?2? in the direction of the vector 3%—4j'+2f€
at the point (2,-1,3).
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Theory
Given that
0 = 3ayz — 4223
and
a=3i—4j + 2k,
a
a = 157,
[
o 3i—4j+2k
V3 (-4 + 22
30— 4j+2k
V29
grad() = V()

= (5% +§£ + %%)(3932?/2 — 4422°)

= 1(6zy2) 4 J (322 — 8y=®) + k(3z?y — 124°2?)

o0 3i—4j+2k ; .
9 %.(Z(nyz) + 7 (322 — 8yz*) + k(3x%y — 12y%2%)).

_ 18zyz — 1222 + 3223 + 6x%y — 249%2>

V29

Directional derivative at point (2, —1,3) is

—1356
V29

Algorithm

Step 1: Calculate V¢ (gradient);
Step 2: Normalize a;

Step 3: Compute the dot product V¢ - @ at the given point.

Program

The following MATLAB script implements the algorithm.
Syms X y z

phi=3%22%yxz—4%y?x 2%

grad_phi = gradient(phi, [x,y, z]);

point = [2,—1,3];

grad_phi_at_point = subs(grad_phi, [z, y, z|, point);
d=[3,—4,2];

d_unit = d/norm(d);

305



Analytic Geometry Practical No. 6

directional _derivative = dot(grad_phi_at_point, d_unit);

disp("The directional derivative of phi at the point (2, -1, 3) in the direction of [3, -4, 2]
is:’);

disp(vpa(directional derivative, 4));

Output

The output of the program is as follows:

The directional derivative of phi at the point (2, -1, 3) in the direction of [3, -4, 2] is:
—251.8

Exercise

Exercise 1: Find the directional derivatives of @ = 2%y + 3® in the direction of the vector
3t + 47 at the point (1,2).

Exercise 2: Find the directional derivatives of () = 2%y — y? in the direction of the vector
21 — 45 at the point (-1,2).

Exercise 3: Find the directional derivatives of 0 = 2%yz + y? + zyz in the direction of the
vector i + j + k at the point (1,2,-1).

Practical No. 6

Problem
Find k if the following pair of the circles are orthogonal
224y +2y — k=0,

22+ 9%+ 2ax + 8 =0.

Theory
General form of the equation of a circle is
22+ %+ 2hx 4+ 2ky +c=0

where (hq, k1) is the center of the circle, r is the radius.
From the first circle

22+ + 2y —k=0
- (hl,kl) - (O,b),

CcT = —k.
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Analytic Geometry

From the second circle

2+ 9y +2ar+8=0
- (hg,k’z) = (CL,O),

Cy — 8.
Condition for orthogonality of two circle
2h1h2 + 2]{?1/{52 =1 + Ca.

Hence, the value of £ is 8.

Algorithm

Step 1: Define symbolic variables a, b, and k;

Step 2: Use orthogonality condition and solve for k using solve(Q);

Step 3: Display the value of k.

Program

The following MATLAB script implements the algorithm.
syms a b k

hl = 0,

]Cl = b,

cl=—k;

hg = a;

kg = O,

c2=38;

orthogonality_condition = 2x hl « h2 + 2 x k1l x k2 == c_1 4 ¢_2;
k_value = solve(orthogonality_condition, k);

disp(’The value of k for which the circles are orthogonal is:’);
disp(k_value);

Output

The output of the program is as follows:
The value of k for which the circles are orthogonal is:

8
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Exercise
Exercise 1: Find £ if the following pair of the circles are orthogonal
vy +4by — k=0,

22+ y* 4+ 8ax +6 = 0.

Exercise 2: Find k if the following pair of the circles are orthogonal
2, 2 _
x*+y° 4+ 2by — 3k =0,

22 4+ y? + 2az + 16 = 0.

Exercise 3: Find k if the following pair of the circles are orthogonal
2, .2 _
x°+y° + 2by — 5k =0,

2? +y® +2ax + 10 = 0.

Practical No. 7

Problem

Find the equation of the circle with center (2,3) and touching the line 3z — 4y +1 = 0.

Theory

Given the center C' = (2, 3) and radius r = Perpendicular distance from C' to Az+ By+C =
0. Therefore,

. _ 1A+ BE+C|
VA2 + B2

32) —43)+ 1] _ |
A /32 + 42

Equation of the circle

(x = h)* + (y — k)* =r*
— (z-2+(y-3)7=1
— 2’ + 9y —4dx —6y+12=0.
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Algorithm

Step 1: Calculate radius as the perpendicular distance from (2, 3) to the line using formula;
Step 2: Substitute the center and radius into (x — h)? + (y — k)? = r?;

Step 3: Display the equation.

Program

The following MATLAB script implements the algorithm.

syms X y
h = 2;
=3
A=3;
B=—4;
C=1;

r=abs(A*h+ Bxk+ C)/sqrt(A? + B?);
disp('Radius of the circle:’);

disp(r);

circle.eq = (x — h)* + (y — k)* — r%
disp("Equation of the circle:’);
disp(circle_eq);

Output

The output of the program is as follows:
Radius of the circle:

1

Equation of the circle:

(0= 27+ (y— 371

Exercise

Exercise 1: Find the equation of the circle with center (1,-2) and touching the line = +
2y —4=0.

Exercise 2: Find the equation of the circle with center (3,4) and touching the line 6x —
4y + 10 = 0.

Exercise 3: Find the equation of the circle with center (-2,-3) and touching the line
—3r+4y—1=0.

Practical No. 8
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Practical No. &

Problem

To find the shortest distance between the two skew lines given by

r—2 y+1 z2-6

3 2 2
and

r—6 1l—-y 2438

3 2 0
Theory

We use the formula . . .
|(d1 X dz) ) PQ|

Distance = — —
|d1 X d2|

For the first line
r—2 y+1 =z-6

3 2 2

we can write
m=(2,—-1,6) +1(3,2,2),

So, the direction vector d_i of the first line is
di = (3,2,2),

P=(2,-1,6).

For the second line
r—6 1—y 248

3 2 0’

we can write
75 = (6,1, —8) + s(3,—-2,0).

So, the direction vector dy of the second line is

d; = (37 _270)7
Q = (67 17 _8)7

PQ=(6-21+1-8—06)= (4,2 —14).

Using the formula for the cross product

gk
d1><d2:3 2 2
3 —2 0

=i(4) — j(—6) + k(—12)
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|dy X dy| = /4% + 62 + (—12)2
|dy % dy| = /16 + 36 + 144 = V/196 = 14.

Now, we find the dot product (d: X d;) . PQ:

(dy x dy) - PQ = (4,6, —12) - (4,2, —14)
=(4-4)+(6-2) + (=12 —14)
=16 + 12 + 168 = 196.

Finally, the shortest distance between the two lines is:

(di x d5) - PQ| _ [196] _
|dy X b 14

Distance = 14.

Algorithm

Step 1: Define direction vectors and points for each line;
Step 2: Calculate cross product of direction vectors;
Step 3: Find distance using formula involving cross product and vector joining points;

Step 4: Display distance.

Program

The following MATLAB script implements the algorithm.
dl =[3,2,2];

d2 =[3,-2,0];

P=[2,-1,6];

Q= [6’ L, _8];

PQ=0Q—P;

cross_dl_d2 = cross(dl, d2);

magnitude_cross_-d1_d2 = norm(cross-d1_d2);

dot_product = dot(cross_dl1_d2, PQ);

distance = abs(dot_product) /magnitude_cross_d1_d2;

fprintf("The shortest distance between the two lines is: %.2f", distance);

Output

The output of the program is as follows:
The shortest distance between the two lines is: 14.00
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Exercise

Exercise 1: To find the shortest distance between the two skew lines given by

r—1 y—2 2-3

and

Exercise 2: To find the shortest distance between the two skew lines given by

r+2 y—3 z+6
-3 -1 -4

and

r+6 1l—-y 2-—=z

3 -2 4

Exercise 3: To find the shortest distance between the two skew lines given by

—x+2 —y+1 =z-1
-2 -1 5

and
—x—6 1+y 22+8

-3 3 4

Practical No. 9

Problem

What is the moment about the point i+ 2) — k of a force represented by 3¢ + k acting
through the point 2¢ — 5 + 3k 7
Theory
The moment M of a force F about a point with position vector 7y is given by
M=7xF

In this problem
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where 7= 7, — 7%.

Therefore, ¥ = (20 — 5+ 3k) — (1 +2j — k) =i —3)+4k, M = |1 -3 4| = M =
3 0 1

— 37+ 117 + 9k.

Algorithm

Step 1: Calculate the position vector between the two points;

Step 2: Compute the cross product with the force vector to find the moment.

Program

The following MATLAB script implements the algorithm.
r0 = [1;2; —1];

rp = [2;—1;3];

F = [3;0;1];

r=rp—r0;

M = cross(r, F);
disp('The moment of the force about the point is:’);
disp(M);

Output

The output of the program is as follows:
The moment of the force about the point is:
[—3,11,9]

Exercise

Exercise 1: What is the moment about the point 3i 4+ 25 + k of a force represented by
2 + k acting through the point i + j + k7

Exercise 2: What is the moment about the point 2i + 35 — 5k of a force represented by
7i + 11k acting through the point 13i — 17j + 19k ?

Exercise 3: What is the moment about the point 47 + 95 — 16k of a force represented by
251 + k acting through the point 2i — j + 3k ?

Practical No. 10
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Problem

Write a unit vector in the direction of the sum of the vector @ = 2i — 5k and b = 2i —4}+5/%.

Theory

Given vectors

Let the sum of the vectors is
&= (2i — 5k) + (2i — 4] + bk) = 4i — 4.

The unit vector is given by

. @
C= —
€l
A4
|47 — 4j]
1. 1
1

Algorithm

Step 1: Add vectors a@ and b to get ¢

Step 2: Calculate the magnitude of ¢ and normalize it.

Program

The following MATLAB script implements the algorithm.

a = [2;0; =5];

b= [2; —4;5];

sum_vector = a + b;

magnitude = norm(sum_vector);

unit_vector = sum_vector /magnitude;

disp(’The unit vector in the direction of the sum of a and b is:’);
disp(unit_vector);

Output

The output of the program is as follows:
The unit vector in the direction of the sum of a and b is:

0.7071, —0.7071, 0]
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Exercise

~

Exercise 1: Write a unit vector in the direction of the sum of the vector @ = 3¢ + 27 — k
and b= 2i + ] + k.

Exercise 2: Write a unit vector in the direction of the sum of the vector @ = 3i + k and
b=3i— 2]+ 5k.

]}xe}'cisAe 3: Write a unit vector in the direction of the sum of the vector a = i+ 7+ k and
b=1—j5+k.

Practical No. 11

Problem

Find the equation of the line whose distance from the origin is 5 units and the angle which
the line makes with the positive z-axis is 120°.

Theory
The equation of a line in the normal form is given by
xrcosf +ysinfh =d
where d is the perpendicular distance from the origin to the line, # is the angle that the

perpendicular to the line makes with the positive x — axs.
Given

d=5, 0=120°

substituting these values into the equation, we have
x cos 120° + ysin 120° = 5.

Thus, the equation becomes:

—r+V3 y = 10.
Therefore, the equation of the line is
r—+/3 y = —10.
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Algorithm

Step 1: Define the distance d = 5 and angle 6 = 120°;
Step 1: Use the formula x cosf + ysinf = d to write the line equation;

Step 2: Simplify to obtain the final form of the equation.

Program

close all

clear all

clc

d = 5;

theta = 120;

% Convert angle to radians for trigonometric functions

theta_rad = deg2rad(theta);

A = cos(theta_rad);

B = sin(theta_rad);

C = —-d,;

% range for x values to plot the line

x = -15:0.1:15;

% Calculate y values using the line equation

y=( - A*x)/ B;

fprintf (’The line equation is: %.2fx + %.2fy = %.2f\n’, A, B, d);

% Plot the line

plot(x, y, ’b’, ’LineWidth’, 2);

hold on;

% Plot the origin point

plot(0, 0, ’ro’, ’MarkerSize’, 8, ’MarkerFaceColor’, ’r’);

text(0, O, > Origin’, ’VerticalAlignment’, ’top’, ’HorizontalAlignment’, ’left’);
x_perpendicular = d * cos(theta_rad);

y_perpendicular = d * sin(theta_rad);

plot ([0 x_perpendicular], [0 y_perpendicular], ’k--’, ’LineWidth’, 1.5);
text (x_perpendicular,y_perpendicular,sprintf(’%.1f units’,d),’VerticalAlignment’,’bottom’);
% Add labels, title, and grid

xlabel(’x’);

ylabel(’y’);

title(sprintf(’Line with Distance %.1f Units from Origin at %.1f with+Ve X-axis’,d,theta));
grid on;

axis equal;

hold off;
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Output

The line equation is: -0.50x + 0.87y = 5.00

Exercise

Exercise 1: Find the equation of the line whose distance from the origin is 7 units and
the angle which the line makes with the positive z-axis is 45°.

Exercise 2: Find the equation of the line whose distance from the origin is 5 units and
the angle which the line makes with the positive z-axis is 150°.

Exercise 3: Find the equation of the line whose distance from the origin is 10 units and
the angle which the line makes with the positive z-axis is 180°.

Practical No. 12

Problem
Find another polar representation of the point (r,6) = (2, %) with r < 0.
Theory

In polar coordinates, a point (r, ) can be represented in an alternative form by using the
transformations
r——r and 60— 60+m.

(r,0) = (2, g) .

We want to find an equivalent representation with » < 0. Using the transformations above

Given

r=-—2 and 92%—1—#.

Thus, the polar representation of the point with r < 0 is

(r,0) = (_2,4?”) .

Algorithm

Step 1: Convert the given coordinates using r — —r and 6§ — 6 4 7;

Step 2: Write the new polar representation as (r,0) = (-2, %’r)
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Program

r = 2;

theta = pi/3;

% Find the equivalent polar coordinates with r < 0
r_neg = -r;

theta_neg = theta + pi;

fprintf (’The same coordinate with r<0 is :’);
fprintf (° (%.2f,%.2f radians)\n’,r_neg,theta_neg);

Output

The same coordinate with r<0 is : (-2.00,4.19 radians)

Exercise

Exercise 1: Find another polar representation of the point (r,0) 1
Exercise 2: Find another polar representation of the point (r,0) = (3
Exercise 3: Find another polar representation of the point (r,6) = (4

Practical No. 13

with r» < 0.

) with » < 0.
7§)
27) with r < 0.

[y

Problem

Find the asymptotes of the function

2?2+ 4+ 7
Yy=—""—"—"
x—1
(vertical, horizontal, or slant).
Theory
To find the asymptotes of the function
x> +4x+7
Yy=—1—":
rz—1

we write in the form
ylx —1) =2 +42 + 7.

We analyze the following types of asymptotes
Vertical Asymptote: For a vertical asymptote equate to zero the coefficient of highest
power of y in the equation,provided this is not merely a constant .
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For this equation, x — 1 = 0 when = = 1. Therefore, there is a vertical asymptote at
r =1

Horizontal: For a horizontal asymptote equate to zero the coefficient of highest power of
x in the equation,provided this is not merely a constant .

For this equation, the coefficient of highest power of x is constant. Therefore, there is
no horizontal asymptote.
Slant: Put x = 1 and y = m in second degree term, let the second degree term is

ho(m)=1-—m

and the zero’s of hy(m) is m = 1.
Put x = 1 and y = m in first degree term, let the first degree term is

Now, we find the value of C'.
c—_M (m)
hy(m)
_4+4+m
1

at m =1, C is 5. so the slant asymptote is:
Yy=x+5

Vertical asymptote: z =1
Slant asymptote: y =z + 5

Algorithm

Step 1: For the vertical asymptote, set the denominator to zero and solve for z;

Step 2: For the slant asymptote, perform polynomial division of the numerator by the
denominator;

Step 3: Analyze results to identify asymptotes.

Program

close all

clear all

clc

% Step 1: Define variable and the function
syms X;

f=((x"2+4xx+7)/ (x-1);
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% Step 2: Find the vertical asymptote
[*, denom] = numden(f); % Separate numerator and denominator
vertical_asymptote = solve(denom == 0, x); % Solve for x where denominator is zero

% Step 3: Find the slant asymptote by polynomial division
[num, denom] = numden(f); % Separate numerator and denominator again for clarity
[quotient, remainder] = quorem(num, denom, x); % Polynomial division

% Display results
disp(’Vertical Asymptote at x = ’);
disp(vertical_asymptote);

disp(’Slant Asymptote: y = ’);
disp(quotient); % The quotient is the slant asymptote

% For plotting

fplot(f, [-10, 10], ’DisplayName’, ’f(x)’)

hold on

fplot(quotient, [-10, 10], ’--r’, ’DisplayName’, ’Slant Asymptote’)
xline(vertical_asymptote, ’--k’, ’DisplayName’, ’Vertical Asymptote’)
legend show

grid on

title(’Graph of the Function and Its Asymptotes’)

hold off

Output

Vertical Asymptote at x =1
Slant Asymptote: y = x + 5

Exercise
Exercise 1: Find the asymptotes of the function

_Jﬂ+2x+3

Y r—2

(vertical, horizontal, or slant).
Exercise 2: Find the asymptotes of the function

_a@+9x+20

y r+4
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(vertical, horizontal, or slant).
Exercise 3: Find the asymptotes of the function

2 —2r+1

y= z+1

(vertical, horizontal, or slant).

Practical No. 14

Problem

Plot the ellipsoid

2?2 2
I AT
25 + 81 + 16
Theory
The given equation represents an ellipsoid
22 g 2
I AT
25 * 81 + 16

To understand and plot this ellipsoid, we analyze its structure. This equation is in the
standard form of an ellipsoid

2 2 2
eTpta=h

where

a’>=25=a=>5,

b =81=b=09,

2=16=c=4.

Thus, the ellipsoid has:

Semi-axis length 5 along the z-axis,
Semi-axis length 9 along the y-axis,
Semi-axis length 4 along the z-axis.

Algorithm
Step 1: Define semi-axis lengths based on the coefficients in the ellipsoid equation;
Step 2: Plot the ellipsoid using the defined axis lengths.
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Program

[X, Y, Z] = ellipsoid(0, O, O, 5, 9, 4);

surf(X, Y, Z);

xlabel (’X-axis’);

ylabel(’Y-axis’);

zlabel (’Z-axis’);

title(’Ellipsoid: x"2/25 + y~2/81 + z°2/16 = 17);
axis equal;

Ellipsoid: x%/25 + y2/81 + 2%/16 = 1

Z-axis

Output

An ellipsoid image.

Exercise

Exercise 1: Plot the ellipsoid
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Exercise 2: Plot the ellipsoid

4z 9y 22
25 100 225

Exercise 3: Plot the ellipsoid

x? 251> z

121 144 361

Practical No. 15

2

Problem

Plot the surface and identify its type for the equation

2?4 P+ 2% —day — 4oz —dyz +24 = 0.

Theory
To identify the type of surface represented by the equation
2?4y’ + 2% —doy — 4oz —Ayz +24 = 0.
We proceed by analyzing and simplifying the equation using linear algebra techniques.

1. Rewrite the equation in quadratic form: This equation can be represented in

the form
xTAx +blx+¢ =0,
x
where x = | y |, and A is the symmetric matrix associated with the quadratic terms.
z

From the given equation, we can identify A as follows:

1 -2 =2
A=|-2 1 =2
-2 =2 1

2. Determine the eigenvalues of A: The type of surface can be identified by exam-
ining the eigenvalues of A. We calculate the eigenvalues by solving det(A — A\I) = 0.

After computing, we find that the eigenvalues are
/\1:—3, )\2:3, )\3:3

Since, there is one negative and two positive eigenvalues, the surface is a hyperboloid
of one sheet.
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Algorithm
Step 1: Rewrite the equation in matrix form and determine the symmetric matrix;
Step 2: Compute the eigenvalues of the matrix to identify the type of surface;

Step 3: Plot the surface based on the identified type (hyperbolic).

Program

close all
clear all
clc
syms X y Zz;
eq = X"2 + y°2 + 272 - 4dxxxy - 4xx*z - dxy*xz + 24 == 0;
A=11, -2, -2;
-2, 1, -2;
-2, -2, 11;

% Calculate the eigenvalues
eigenvalues = eig(A);
% Check if all eigenvalues are real and non-zero

isHyperbolic = isreal(eigenvalues) && all(eigenvalues ~= 0);
disp(’Eigenvalues are:’);
disp(eigenvalues);

if isHyperbolic
disp(’The surface is hyperbolic.’);
else
disp(’The matrix A is not hyperbolic.’);
end
% Convert symbolic expression to a function for plotting
fimplicit3(eq, [-10 10 -10 10 -10 10]1);
xlabel(’X’); ylabel(’Y’); zlabel(’Z’);
title(’Surface: x"2 + y°2 + 272 - 4xy - 4xz - 4yz + 24 = 0’);
axis equal;

Output

Eigenvalues are:

-3.0000

3.0000

3.0000

The surface is hyperbolic.
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Exercise
Exercise 1: Plot the surface and identify its type for the equation

a2+ % 4222 4+ 22y = 0.

Exercise 2: Plot the surface and identify its type for the equation

2?4yt 42— 22y — 202 — 2yz + 12 =0.

Exercise 3: Plot the surface and identify its type for the equation

22% + 3% + 22 — 22y — 22z — dyz + 24 = 0.

Practical No. 16

Problem

A surface is define as :

z:x2+y2.

Find the equation of tangent plane to this surface at point (1,2,5).

Theory
The equation of tangent plane to the surface z = f(z,y), at point (xq, 3o, 2o define as,

z = f(z0,90) + fo(20,y0)(x — T0) + f, (0, Y0) (¥ — Yo) (9.1)
So, we have to find out the values of f(zo,yo), fo(%0, v0) and fy(xo,yo), where zo = 1 and
Yo = 2, and substituting these values in equation (1). Therefore, we get equation of tangent

plane, i.e.,
2z =2x + 4y — 5.

Algorithm
Step 1: Calculate partial derivatives of z = f(z,y) with respect to x and y;
Step 2: Substitute the point (zo, yo, 20) and use the tangent plane formula.
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Program

close all

clear all

clc

x0 = 1;

yo = 2;

z0 = x072 + y0~2;

% Define the partial derivatives of z
fx = 2 x x0;

fy = 2 * yO;

syms X y z

z_tangent = z0 + fx * (x - x0) + fy * (y - y0);

% Display the tangent plane equation

fprintf (’Plane is: z = %.2f + %.2fx(x - %.2f) + %.2fx(y - %.2f)\n’, 20, fx, x0, fy, y0);
fprintf (’Plane: z = %.2f*xx + %.2fxy + %.2f\n’, fx, fy, (20 - fx*x0 - fyx*y0));

%define the surface

eq = X2 +y'2 - z;

x"2 + y°2

% define the plane
eql = 2%x +4xy -z -5;

% Plot the surface in blue

fimplicit3(eq==0,[-5 5 -5 5 -5 8],’FaceAlpha’,0.5, EdgeColor’, ’none’,’FaceColor’,’b’);
xlabel(’X’); ylabel(’Y’); zlabel(’Z’);

title(’Surface z = x°2 + y~2 and Tangent Plane at (1, 2, 5)’);

axis equal;

hold on;

% Plot the tangent plane in green

fimplicit3(eql==0,[-5 56 -5 5 -5 8],’FaceAlpha’,0.5, ’EdgeColor’, ’none’,’FaceColor’,’g’);
xlabel(’X’); ylabel(’Y’); zlabel(’Z’);

axis equal,;

hold on;

% Mark the point of tangency in red
x0 = 1; yO = 2; z0 = x0°2 + y0~2; % Point (1, 2, 5)
plot3(x0, yO, z0, ’ro’, ’MarkerSize’, 10, ’MarkerFaceColor’, ’r’)

% Add labels and legend

xlabel(’x’);

ylabel(’y’);

zlabel(’z’);

title(’Surface z = x"2 + y~2 and Tangent Plane at (1, 2, 5)’);
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legend(’Surface z = x"2 + y~2 (Blue)’, ’Tangent Plane (Green)’, ’Point of Tangenc
grid on
hold off
Output

Plane is: z = 5.00 + 2.00%(x - 1.00) + 4.00%(y - 2.00)

Plane: z = 2.00*x + 4.00*xy + -5.00
Exercise
Exercise 1: A surface is define as :

z=a® —y>

Find the equation of tangent plane to this surface at point (2, 1,5).
Exercise 2: A surface is define as :

2 = 22° + 492

Find the equation of tangent plane to this surface at point (3,2,4).
Exercise 3: A surface is define as :

z=2% — 2%

Find the equation of tangent plane to this surface at point (—1, —2,0).

Practical No. 17

Problem-17

Find the equation of the cone whose vertex is at the origin and passes through the curve

.732

4

22

y2
+§+T:1,$+y+221.

Theory

General form of a line through the origin. Any line passing through (0,0,0) can be written

as
x oy z

l m n

Let Coordinates of a point P on the line. The coordinates of any point P on this line can be
represented as (Ir, mr,nr), where r is a arbitrary constant. If this line intersects the given
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curve, then the coordinates of P must satisfy the equation of the curve.
Substitute x = lr, y = mr, and z = nr into

ZL’Q y2 22
T AR
19T

leads to 2,2 -
Tr m97° +n%r?=1.
Dividing by 72, we get
2 m?
Z+7+n2 =({+m+n)

After simplifying further, we obtain the required equation of the cone
271% 4 32m? 4 72(Im + mn + nl) = 0.
Thus, the equation of the cone required is

2722 + 32y° + 72(zy + yz + zx) = 0.

Algorithm

Step 1: Define symbolic variables z, y, z, [, m, and n in MATLAB;

Step 2: Represent any point P on the cone as (Ir, mr, nr);

Step 3: Substitute coordinates (Ir, mr,nr) into the curve equation % + % +22=1;
Step 4: Simplify the equation by dividing by 7?;

Step 5: Derive the required equation of the cone;

Step 6: Display the result.

Program

syms X yzlmnr

% Define coordinates of the point P on the line

x =1 % r;
y =m* r;
Z =n % r;

% Substitute into the curve equation x72/4 + y~2/9 + z°2 =1
curve_eq = (x72)/4 + (y~2)/9 + z°2 == 1;

% Substitute x = 1lr, y = mr, z = nr
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curve_eq_sub = subs(curve_eq, {x, y, z}, {l*r, m*r, n*r});

curve_eq_simplified = simplify(curve_eq_sub / r"2);
cone_eq = 27 * 172 + 32 xm™2 + 72 x (L *xm+m*n +n *x 1);

disp(’The equation of the cone is:’)
disp(’ 27 * x"2 + 32 x y72 + 72 x (x *xy+y *xz+ 2z * x)’)

Output

The equation of the cone is:
27 * xX72 + 32 x y72 + 72 % (x x y+y *x z+ 2z % X)

Exercise

Exercise 1: Find the equation of the cone whose vertex is at the origin and passes through
the curve

1'2 yQ 22
| = 1.
St ot T =haty+e

Exercise 2: Find the equation of the cone whose vertex is at the origin and passes through
the curve

Exercise 3: Find the equation of the cone whose vertex is at the origin and passes through
the curve

Practical No. 18

Problem

Trace the curve y?(5 — x) = 22(5 + ).

Theory

(i) Symmetry: The curve is not symmetrical about the z-axis.

329



Analytic Geometry Practical No. 18

(ii) Origin: The curve passes through the origin, and the tangents at the origin are given
by:

Y =1r*=>y=2 and y=—uz.

Thus, the origin is a node.
(iii) Asymptotes: The curve has asymptotes at z = 5 and = = —5.
(iv) Points of Intersection with Axes:
e When x = 0, we get y = 0.
e When y = 0, the equation becomes:
2%(5 + 1) = 0.

Solving for z, we find:

r=0 or z=-3.
Therefore, the curve crosses the axes at (0,0) and (—5,0).

(v) Solving for y in terms of z:

or

Behavior of y for values of z:

gi becomes
—T

e When x > 5 or x < —5, y becomes imaginary because the term
negative.
Therefore, no portion of the curve lies to the right of the line x = 5 or to the left

of the line z = —5.

Hence the shape of the curve is shown in Fig. Hence the curve know as Strophoid
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Plot of the Curve yz (5-x)= x? (5 + X)
107, ]

Positive y branch

Megative y branch

— — — — Asymptotes

Yy
o

x=5

-10

Algorithm

Step 1: Define z in a specified range using linspace in MATLAB,;
Step 2: Compute the corresponding y values using the curve equation;
Step 3: Identify positive and negative branches of y;

Step 4: Plot both branches and add asymptotes at x = 45;

Step 5: Label axes and display the final plot.
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Program

x = linspace(-5, 5, 1000);
% Calculate y values using the curve equation:
hy2=(&x"2x*(B+x))/6-x)
% y can be positive or negative, so we take both +sqrt and -sqrt
% Initialize y arrays to hold real parts of y values
y_positive = NaN(size(x));
y_negative = NaN(size(x));
for i = 1:length(x)
% Check to ensure that the denominator (5 - x) is positive to get real y values
if (6 - x(i)) > 0
y_positive(i)
y_negative (i)

sqrt((x(i)°2 * (5 + x(1))) / (5 - x(1)));
-sqrt((x(1)"2 * (5 + x(1))) / (5 - x(i)));

end
end

% Plot the curve

figure;

hold on;

plot(x, y_positive, ’b’, ’LineWidth’, 1.5); % Plot positive branch
plot(x, y_negative, ’r’, ’LineWidth’, 1.5); % Plot negative branch
xlabel(’x’);

ylabel(’y’);

title(’Plot of the Curve y™2 (5 - x) = x72 (5 + x)’);

grid on;

axis equal;

x1im([-6, 6]); % Extend x-axis slightly beyond the asymptotes for clarity
ylim([-10, 101);

% Add asymptotes
xline(5, ’--k’, ’x = 5’, ’LabelVerticalAlignment’, ’bottom’);
xline(-5, ’--k’, ’x = -5’, ’LabelVerticalAlignment’, ’bottom’);

legend(’Positive y branch’, ’Negative y branch’, ’Asymptotes’);
hold off;

Output

Figure of Strophoid

332



Practical No. 19

Analytic Geometry

Exercise

Exercise 1: Trace the curve z2/3 4+ y%/% = ¢?/3.

Exercise 2: Trace the curve z%y* = a?(y? — z?).
Exercise 3: Trace the curve ay? = z%(a — x), where a > 0.

Practical No. 19

Problem

Find the angle between the planes:
3r—2y+62=7

and
20 +y — 2z = 3.
Theory
For the plane 3x — 2y + 6z = 7 the normal vector is
ﬁl - <3, —2, 6>
For the plane 2z 4+ y — 22 = 3 the normal is
Ty = (2,1, —2).

Calculate the dot product of 777 and 75 as,

i = (3)(2) + (—2)(1) + (6)(-2) =6 —2— 12 = —

The magnitudes of 7y and i, are 7 and 3, respectively. Calculate 6:

iy - Tig -8 =8

fil[ie]  7-3 21’

0 = cos™! (_—8> .
21

0 ~ cos™*(—0.381) ~ 112.62°.

cosf =

Algorithm

8.

Step 1: Define the normal vectors iy = [3, —2,6] and 71y = 2,1, —2] in MATLAB;

Step 2: Calculate the dot product dot_product = dot(nl, n2);

Step 3: Compute the magnitudes of 77; and 75 using norm();
Step 4: Calculate the angle 6 as cos™! (m%

|71 ]7i2]

Step 5: Display the angle in degrees.
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Program

close all

clear all

clc

% Define the normal vectors for the two planes
nl = [3, -2, 6];

n2 = [2, 1, -2];

dot_product = dot(nl, n2);
magnitude_nl = norm(nl);
magnitude_n2 = norm(n2);

cos_theta = dot_product / (magnitude_nl * magnitude_n2);

theta = acosd(cos_theta);
fprintf (’The angle between the planes is approximately %.2f degrees.\n’, theta);

% Define the grid for plotting the planes
[x, y] = meshgrid(-10:1:10, -10:1:10);

z1
z2

(7 - 3xx + 2xy) / 6;
(3 -2%x - y) / -2;

% Plot the planes
figure;
hold on;

% Plot the first plane in blue
surf(x, y, zl, ’FaceColor’, ’cyan’, ’FaceAlpha’, 0.5);

% Plot the second plane in red
surf(x, y, z2, ’FaceColor’, ’magenta’, ’FaceAlpha’, 0.5);

% Plot the normal vectors
quiver3(0, 0, 0, n1(1), n1(2), n1(3), ’k’, ’LineWidth’, 2, ’MaxHeadSize’, 0.5’);
quiver3(0, 0, 0, n2(1), n2(2), n2(3), ’g’, ’LineWidth’, 2, ’MaxHeadSize’, 0.5’);

% Label the axes
xlabel (’X’);
ylabel(°Y’);
zlabel(°Z?);

% Set the title with the angle between the planes
title(sprintf(’Angle between the planes: %.2f degrees’, theta));
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% Set the view angle for better visualization
view(3);

grid on;

axis equal;

% Plot the angle as an arc

t = linspace(0, deg2rad(theta), 100);

arc_x = cos(t);

arc_y = sin(t);

arc_z = zeros(size(t));

plot3(arc_x, arc_y, arc_z, ’k’, ’LineWidth’, 1.5, ’DisplayName’, sprintf(’Angle

% Offset the arc to start from the tip of one normal vector
arc_offset = [0, 0, 0];

plot3(arc_x + arc_offset(1l), arc_y + arc_offset(2), arc_z + arc_offset(3), ’k’, ’

% Add a text annotation to display the angle

text (0.5, 0.5, 0.5, sprintf(’Angle: %.2f’, theta), ’FontSize’, 12, ’Color’, ’k’);

hold off;

Output

The angle between the planes is approximately 112.39 degrees.

Exercise

Exercise 1: Find the angle between the planes:
r+y+z=3

and

20 — 3y — 2z = 1.
Exercise 2: Find the angle between the planes:

3r+y+6z=4
and

—x+y—2z=06.
Exercise 3: Find the angle between the planes:

20 —y+3z2=28
and

r—y+3z=4
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Practical No. 20

Problem

Solve the system of equation of four variables which is define as

20 + 3y — 2+ w =38,
T —2y+ 32+ 4w = -3,
r+y—4z—w =4,
dr — 3y + 2z + bw = 6.

Theory
We have to solve these system of equation using gauss-elimination method.

Step 1: Represent the System as a Matrix Equation

We begin by representing the system of equations in matrix form as:

A-X=B8B
where
2 3 -1 1 x 8
A= :13_12 —34 —41 A= Z  B= _43
4 -3 2 5 w 6

Step 2: Solve for X using Gaussian Elimination

To solve for X, we apply Gaussian elimination, which involves performing row operations
to transform matrix A into an upper triangular matrix. Then we perform back-substitution
to solve for the variables x, y, z and w.

Row Operations
We will apply the following row operations:

e Use row operations to eliminate entries below the leading diagonal in the augmented
matrix.

e Perform back-substitution to solve for the variables x, y, z, and w.

Final Solution

After applying the row operations, we obtain the values of z, ¥, z, and w.
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Algorithm

Step 1: Define the coefficient matrix A and the constants vector B in MATLAB;
Step 2: Solve for vector X using X = inv(A) * B;

Step 3: Display the solution vector [z,y, z, w].

Program

% Define the coefficient matrix A and the constants vector B
A=[2, 3, -1, 1;
-2

1, -2, 3, 4
3, 1, -4, -1;
4, -3, 2, 5];

B = [8; -3; 4, 6];

% Solve for the vector X

X = inv(A)*B;
disp(’The solution for [x; y; z; w] is:’);
disp(X);
Output
The solution for [x; y; z; w] is:
9.6667
2.1667
9.0000
-8.8333
Exercise

Exercise 1: Solve the system of equation of four variables which is define as

rT+y+z+w=1,

T —2y+ 3z — 4w = 2,
2 + 3y — 4z + bw = 3,
3r —4y + 5z — bw = 4.
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Exercise 2: Solve the system of equation of four variables which is define as

r+3y—z+w =12,

T — 2y + 3z + 4w = =32,
r+y—4z—w=11,

T — 3y + 22 4+ dw = 26.

Exercise 3: Solve the system of equation of four variables which is define as

20 +y—z4+w=0,
r—y+3z+4dw =3,
3r +y — 952z — 3w =79,
dr —y+ 72 + dw = —6.
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Appendix A
MATLAB

Introduction to MATLAB

MATLAB (Matrix Laboratory) is a high-level programming language and environment
primarily used for numerical computation, data analysis, and visualization. Developed in
the 1980s, MATLAB has become one of the most popular tools in scientific computing and
is widely used in various fields such as mathematics, engineering, physics, and economics.
At its core, MATLAB is designed to work with matrices, which makes it particularly use-
ful for solving mathematical problems that involve linear algebra, abstract algebra, number
theory, and differential equations. MATLABs strength lies in its ability to perform com-
plex mathematical calculations with ease and in a highly efficient manner. In addition
to its numerical capabilities, MATLAB also supports the development of algorithms, data
visualization, and the integration of various hardware systems for real-time computation.

MATLAB Basics

MATLAB operates through a command-line interface, where users input commands that
are executed immediately, and results are displayed in the Command Window. Users can
also write scripts, which are sets of commands saved in a file for repeated use. MATLAB'’s
syntax is simple and intuitive, making it accessible for beginners while being powerful
enough for more advanced users. In command window, we run code by pressing Enter key.
The script can be run by pressing Ctrl + Enter or pressing green triangle button.

Variables and Operators

In MATLARB, variables are assigned using the equal sign (=). For example, the following
command assigns the value 5 to the variable A:

A=5
MATLAB also supports standard arithmetic operations, such as:
e Addition: +

e Subtraction: -

341



MATLAB Appendix A

e Multiplication: *
e Division: /

e Exponentiation: ~

Linear Algebra in MATLAB

MATLAB was originally designed for matrix computation, and its functions are highly
optimized for performing linear algebra operations.

Creating Matrices

Matrices are fundamental in MATLAB and can be created using square brackets. For
example, the following code creates a 3x3 matrix:

A = [123;456; 789)]

This matrix represents:
1 2 3

A= 1|4 5 6
78 9

Each row of the matrix is separated by a semicolon.

Matrix Operations
MATLAB provides several built-in functions to perform common matrix operations:

o Matrix addition: C = A + B

Matrix multiplication: C = A * B
e Matrix transpose: C = A’

e Matrix inverse: C = inv(A)

e Determinant: det (A)

e Eigenvalues and eigenvectors: [V, D] = eig(A)

For instance, to compute the eigenvalues and eigenvectors of a matrix A, you would use:
[V, D] = eig(4)

where V is the matrix of eigenvectors and D is the diagonal matrix of eigenvalues.

*

Abstract Algebra in MATLAB

MATLAB is also useful in abstract algebra, particularly for tasks such as polynomial
manipulation, solving systems of equations, and performing matrix operations that are
central to group and ring theory.
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Polynomials

In MATLAB, polynomials are represented by vectors of coefficients. For example, the
polynomial 22% 4 322 + x + 5 is represented as:

p=12,3,1,5]
To evaluate a polynomial at a specific value of x, say x = 2, we use:

polyval(p, 2)

Solving Systems of Linear Equations

In abstract algebra, solving systems of linear equations is a common task. MATLAB
provides a simple way to solve a system of equations Ax = b using the backslash operator:

r = A\b

where A is the coefficient matrix and b is the column vector of constants.

Number Theory in MATLAB

MATLAB is also well-suited for number-theoretic computations, such as prime number
generation, modular arithmetic, and greatest common divisor (GCD).
Prime Numbers

The function isprime(n) checks if the number n is prime. To generate all prime numbers
up to a given limit, we can use:
primes(limit)

GCD and LCM

To calculate the greatest common divisor (GCD) of two numbers, we use:
gcd(36,60)

which returns 12, the GCD of 36 and 60. Similarly, to compute the least common multiple
(LCM), we use:
1cm(36,60)

which returns 180, the LCM of 36 and 60.

Differential Equations in MATLAB

MATLAB provides extensive support for solving differential equations, including ordinary
differential equations (ODEs) and partial differential equations (PDEs). The function ode45
is widely used to solve first-order ODEs.
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Solving ODEs

For example, to solve the first-order ODE:

dy

A —1
= y, y(0)

in MATLAB, we define the function and solve it using the following code:

ode = Q(t, y) -2%y;
[t, y] = ode45(ode, [0 5], 1);
plot(t, y);

This code solves the ODE over the time interval [0, 5] and plots the solution.
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Introduction to MATHEMATICA

MATHEMATICA is a comprehensive computational software system developed by Wolfram
Research. It is used extensively for symbolic computation, numerical computation, data
analysis, visualization, and algorithm development. MATHEMATICA is known for its
ability to perform sophisticated calculations with ease, and it has found wide applications
in mathematics, physics, engineering, economics, and other fields.

The system is designed to be highly versatile, allowing users to perform symbolic manip-
ulations, solve complex equations, perform statistical analysis, and generate visualizations.
MATHEMATICASs integrated environment supports a wide variety of mathematical and
technical functions, making it an invaluable tool for students, researchers, and profession-
als.

MATHEMATICA Basics

MATHEMATICA uses a language that is both powerful and user-friendly. The system is
built around a symbolic computation engine, which allows users to perform algebraic ma-
nipulations, including simplifying expressions, solving equations, and working with polyno-
mials, matrices, and more. The MATHEMATICA environment allows for both interactive
and programmatic use, enabling users to write scripts for repeatable tasks or simply input
commands in real-time.

MATHEMATICA supports both functional and procedural programming, and its syn-
tax is relatively intuitive. The system uses a notebook interface, where each document
can contain code, text, and graphical output, making it a great tool for creating inter-
active reports and presentations. The code is run by pressing SHIFT 4+ ENTER in
MATHEMATICA notebook.

Basic Operations

In MATHEMATICA, simple arithmetic operations are straightforward. For example, to
perform basic addition, subtraction, multiplication, and division, one can use:

2+3 5-3 4%x2 6/2
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MATHEMATICA also provides the power operator (for exponentiation), which is denoted
by ~:
2% (which gives 8)

Additionally, the Sqrt function is used for square roots:

Sqrt[16] (which gives 4)

Linear Algebra in MATHEMATICA
MATHEMATICA is equipped with an extensive library of functions for performing matrix

and vector operations. The system allows easy manipulation and computation of matrices,
vectors, and other linear algebra concepts.

Creating Matrices

In MATHEMATICA, matrices are created using curly braces. For example, a 3x3 matrix
can be created as follows:

A={{1,2,3},{4,5,6},{7,8,0}}

This creates the matrix:

BN

I
~ &~ =
co Ot N
O O W

Matrix Operations

MATHEMATICA offers a wide variety of matrix operations. Some common operations
include:

e Matrix addition: A + B

Matrix multiplication: A . B
e Matrix transpose: Transpose [A]
e Matrix inverse: Inverse[A]

e Determinant: Det [A]

Eigenvalues and eigenvectors: Eigenvalues[A] and Eigenvectors[A]
For example, to compute the eigenvalues of a matrix A, use:
Eigenvalues[A]

This command will return a list of the eigenvalues of the matrix A.
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Abstract Algebra in MATHEMATICA

MATHEMATICA is well-suited for abstract algebra, including operations involving poly-
nomials, groups, rings, and fields.

Polynomials

In MATHEMATICA, polynomials are represented as expressions. For example, the poly-
nomial 22% + 322 + x + 5 is written as:

20° +32° + 2 +5
To evaluate a polynomial at a specific value of z, say z = 2, use the ReplaceAll function:
208 +32° +x+5 /. x -> 2

which will output the value of the polynomial when z = 2.

Solving Systems of Linear Equations

MATHEMATICA provides a simple function to solve systems of linear equations. Given a
system of equations Ax = b, you can use the function LinearSolve[A, b] to solve for x:

LinearSolve[A, b]

Number Theory in MATHEMATICA

MATHEMATICA offers powerful tools for performing number-theoretic computations such
as prime factorization, modular arithmetic, and computing greatest common divisors
(GCD).

Prime Numbers

MATHEMATICA can be used to generate prime numbers and check if a number is prime.
For example:

e To check if a number is prime, use PrimeQ[n], where n is the number to be tested.

e To generate a list of primes up to a given number, use Prime [Range [n]].

GCD and LCM
To calculate the greatest common divisor (GCD) of two numbers, use:
GCD[36, 60]

which will return 12, the GCD of 36 and 60. Similarly, to compute the least common
multiple (LCM), use:
LCM[36, 60]

which returns 180, the LCM of 36 and 60.
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Differential Equations in MATHEMATICA

MATHEMATICA offers sophisticated tools for solving both ordinary differential equations
(ODEs) and partial differential equations (PDEs). The function DSolve is commonly used
for solving ODEs symbolically.

Solving ODEs

For example, to solve the first-order ODE:

dy

-9 0) =1
= y, y(0)

you can use the following command in MATHEMATICA:

DSolvely’ [t] == -2 y[t], y[t], t]

This will return the solution y(t) = e

MATHEMATICA can also handle systems of ODEs and higher-order differential equa-
tions, and provides numerous options for controlling the solution process.
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Python

Introduction to Python

Python is a high-level, interpreted programming language known for its simplicity, read-
ability, and versatility. Created by Guido van Rossum in the late 1980s and released in
1991, Python has become one of the most popular programming languages in the world.
It is widely used in a variety of fields such as web development, data analysis, machine
learning, scientific computing, automation, and more.

Pythons syntax is designed to be intuitive and easy to understand, which makes it an
excellent language for both beginners and experienced developers. It supports multiple pro-
gramming paradigms, including procedural, object-oriented, and functional programming.
Additionally, Python has a vast ecosystem of libraries and frameworks, making it an essen-
tial tool for many technical domains, including mathematics and scientific computation.

Python Basics

Python code is written in text files with the extension .py, and it can be executed in various
environments, including interactive shells, scripts, or integrated development environments
(IDEs) such as PyCharm or Jupyter Notebooks.

Pythons syntax is concise, and it emphasizes readability, making it easier for program-
mers to understand and maintain code. Some of the basic constructs in Python include
variables, operators, data types, loops, and conditional statements.

Variables and Operators

In Python, variables are assigned using the equal sign (=). For example, to assign the value
5 to the variable A, you would write:
A=5

Python supports a wide range of operators for performing arithmetic operations, such as:
e Addition: +

e Subtraction: -
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e Multiplication: *
e Division: /
e Exponentiation: **

For example:
5+3=8 5x%x3=152xx3=8

Linear Algebra in Python

Python is widely used in the mathematical community for tasks such as solving linear sys-
tems, matrix operations, and vector manipulations. The NumPy library is the core package
for numerical computations in Python, providing efficient data structures such as arrays
and matrices and functions to manipulate them.

Creating Arrays and Matrices

In Python, arrays and matrices can be created using the numpy library. To create a simple
1D array, use:
import numpy as np

A = np.array([1, 2, 3])

This creates the array:

A=[1 2 3]
To create a 2D matrix, use:

B = np.array([[1, 2], [3, 4]11)

<[} 3

This creates the matrix:

Matrix Operations

Python, through NumPy, provides a wide range of functions to perform matrix operations:

e Matrix addition: C = A + B

Matrix multiplication: C = np.dot(A, B) orC = A @ B

Matrix transpose: C = A.T

Matrix inverse: C = np.linalg.inv(A)

Determinant: det = np.linalg.det(A)

e Eigenvalues and eigenvectors: eigvals, eigvecs = np.linalg.eig(A)
For example, to compute the determinant of a matrix A, use:

det = np.linalg.det(A)
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Abstract Algebra in Python

Python can be used for performing various tasks in abstract algebra, such as polynomial
manipulation, solving systems of equations, and working with groups and rings.
Polynomials

Polynomials in Python can be represented using NumPy or the sympy library for symbolic
computation. For example, the polynomial 223 + 32? + x + 5 can be created as:

from sympy import symbols, Poly
X = symbols(’x’)

poly = Poly(2*x**3 + 3*x**2 + x + 5, x)

To evaluate the polynomial at x = 2, use:

poly.subs(x, 2)

Solving Systems of Linear Equations

Python makes it easy to solve systems of linear equations. Given a system of equations
Ax = b, you can solve it using NumPy as follows:

A = np.array([[2, 1], [1, 3]11)
b = np.array([5, 7])

x = np.linalg.solve(A, b)

This returns the solution vector x.

Number Theory in Python

Python has excellent libraries for number theory tasks, such as generating prime numbers,
calculating the greatest common divisor (GCD), and performing modular arithmetic.

Prime Numbers

Python can be used to check if a number is prime and to generate a list of primes. The
sympy library provides an easy way to work with prime numbers:

from sympy import isprime, primerange

isprime(7) (returns True)

list(primerange (1, 20)) (returns [2, 3, 5,7, 11, 13, 17, 19])
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GCD and LCM

To calculate the greatest common divisor (GCD) of two numbers, use:

import math

math.gcd (36, 60) (returns 12)

Similarly, to compute the least common multiple (LCM), use:

math.1lcm(36, 60) (returns 180)

Differential Equations in Python

Python offers powerful libraries like SciPy for solving ordinary differential equations
(ODEs). The scipy.integrate module contains functions for numerical integration, such
as odeint, which can be used to solve ODEs.

Solving ODEs
To solve the first-order ODE:

dy
— =2y, y(0)=1

dt
you can define the ODE function and use odeint to solve it:

from scipy.integrate import odeint

def model(y, t): return -2 * y
t = np.linspace(0, 5, 100)
yo =1

y = odeint(model, yO0, t)

This will solve the ODE and return the solution as an array of values for y(¢).

NumPy: Numerical Computation in Python

NumPy is one of the most important libraries in Python for numerical computing. It pro-
vides support for multidimensional arrays, matrices, and a large collection of high-level
mathematical functions to operate on these arrays.
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Creating NumPy Arrays

NumPy arrays are more efficient than Python’s built-in lists for mathematical operations.
You can create a NumPy array as follows:

import numpy as np

A = np.array([1, 2, 3, 4, 5])

This creates a 1D array:
A=1 2 3 4 5

For a 2D array (or matrix):
B = np.array([[1, 2], [3, 4], [5, 611)

This creates the matrix:
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Array Operations

NumPy supports element-wise operations on arrays, such as:
e Addition: A + B
e Multiplication: A * B
e Scalar multiplication: A * 3

It also supports more complex operations like dot products, transposition, and linear
algebra functions.

Matplotlib: Visualization in Python

Matplotlib is a plotting library for creating static, interactive, and animated visualizations
in Python. It is widely used for plotting graphs and charts, including line plots, bar charts,
histograms, scatter plots, and more.

Basic Plotting with Matplotlib
To create a basic line plot, you can use the following commands:

import matplotlib.pyplot as plt

x = np.linspace(0, 10, 100)
y = np.sin(x)
plt.plot(x, y)

plt.show()

This will generate a plot of the sine function from 0 to 10.
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Customization of Plots

Matplotlib allows extensive customization of plots, including adding labels, titles, and
legends:
plt.plot(x, y, label="Sine Wave")

plt.title("Sine Function")
plt.xlabel("x")
plt.ylabel("y")
plt.legend()
plt.show()
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