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Preface

The Development of Mathematics Practical Laboratory Manual as per the ITEP Syllabus

is designed to bridge the gap between theoretical mathematics and its practical applica-

tions through computational tools for easy handling the manual is divided into two parts

(Part I and Part II ). With rapid advancements in computers and mathematical software,

technology has become an integral part of mathematical education. While traditional meth-

ods relied heavily on manual calculations, the present era demands that students develop

computational and analytical skills to engage effectively with mathematical concepts.

Visualization plays a crucial role in mathematics learning. Modern mathematical software

allows students to perform complex calculations quickly and provides graphical representa-

tions that enhance their understanding of abstract concepts. By investing time in learning

the basic syntax of these tools, students can significantly improve their efficiency in problem-

solving and analysis. This manual serves as a supplementary text for Practical Mathematics

in the Integrated Teacher Education Programme (ITEP), offering a structured learning ex-

perience that enables students to analyze and classify mathematical concepts independently.

The manual presents a sequence of examples and exercises that reinforce understanding and

enhance problem-solving skills.

The primary objective of this manual is to acquaint students with various mathematical

software tools, develop an understanding of the practical applications of mathematics, and

enable them to integrate mathematics with other scientific disciplines. It aims to enhance

analytical and problem-solving skills while preparing future educators to incorporate com-

putational tools in teaching and research. Each chapter of this manual follows a structured

approach, including conceptual explanations, recommended software applications, step-by-

step solutions, and exercises to reinforce learning. The systematic organization of content

ensures that students not only gain theoretical knowledge but also develop hands-on expe-

rience in applying computational tools to solve mathematical problems.

As computational mathematics continues to play a crucial role in education and research,

this manual serves as an essential resource for students, bridging the gap between theoretical

learning and real-world applications. The increasing relevance of artificial intelligence,

machine learning, and data science has further highlighted the importance of computational
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skills in problem-solving. This manual prepares students for the future by providing them

with the expertise to navigate mathematical challenges using modern technological tools.

Designed to be a valuable academic resource, this manual supports students through pro-

gressive learning, hands-on practice, and analytical problem-solving. By the end of this

manual, students will have acquired a solid foundation in computational mathematics,

proficiency in mathematical software, and the ability to apply mathematics to practical

situations. This first part of the module introduces fundamental concepts, while the subse-

quent parts explore advanced problem-solving techniques and visualization tools. Through

continuous engagement and exploration, students will develop the ability to analyze, in-

terpret, and solve mathematical problems with confidence and efficiency. It is hoped that

this manual will inspire learners to explore mathematics beyond traditional boundaries and

embrace technology as a powerful tool for mathematical discovery.

Place: RIE, Bhopal Program Coordinators
Date: 31.01.2025
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Chapter 1

Algebra and Trigonometry

Practical No. 1

Aim

To understand and verify the relationships between the roots and coefficients of a polyno-
mial equation using MATLAB.

Problem

For the given polynomial equation x3 − 6x2 +11x− 6 = 0, find the roots of the polynomial
using MATLAB and verify the relationships between the roots and coefficients based on
polynomial theory.

Theory

For a cubic polynomial of the form:

ax3 + bx2 + cx+ d = 0,

where a, b, c, and d are the coefficients, the relationships between the roots r1, r2, and
r3 and these coefficients are as follows:

(i) Sum of the roots:

r1 + r2 + r3 = −coefficient of x2

coefficient of x3
= − b

a
.

(ii) Sum of the product of roots taken two at a time:

r1r2 + r1r3 + r2r3 =
coefficient of x

coefficient of x3
=
c

a
.

(iii) Product of the roots:

r1r2r3 = − constant term

coefficient of x3
= −d

a
.
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Algebra and Trigonometry Practical No. 1

Algorithm

Step 1: Define the coefficients of the cubic polynomial ax3+ bx2+ cx+d = 0 in MATLAB
by creating a vector coeff containing the values of the coefficients;
Step 2: Calculate the roots of the polynomial using MATLAB’s roots function. The roots
are computed from the coefficients and stored in a variable roots of poly;
Step 3: Compute the sum of the roots using MATLAB’s sum function and store the result
in the variable sum of roots This value should be equal to − b

a
;

Step 4: Compute the product of the roots using MATLAB’s prod function and store the
result in the variable product of roots. This value should be equal to −d

a
;

Step 5: Compute the sum of the products of the roots taken two at a time using manual
multiplication and addition, and store the result in sum twoproduct roots. This value
should be equal to c

a
;

Step 6: Display the roots of the polynomial using the disp command;
Step 7: Display the relationships between the roots and coefficients using the disp com-
mand, verifying that the following conditions hold:

• The sum of the roots is equal to − b
a
.

• The sum of the products of the roots taken two at a time is equal to c
a
.

• The product of the roots is equal to −d
a
.

Program

% Define coefficients of the polynomial x^3 - 6x^2 + 11x - 6 = 0

coeff = [1 -6 11 -6]; % Coefficients: x^3 - 6x^2 + 11x - 6

% Step 1: Calculate roots

roots_of_poly = roots(coeff);

% Step 2: Compute relationships between roots and coefficients

sum_of_roots = sum(roots_of_poly); % Sum of roots

product_of_roots = prod(roots_of_poly); % Product of roots

sum_twoproduct_roots = roots_of_poly(1)*roots_of_poly(2) + ...

roots_of_poly(1)*roots_of_poly(3) + ...

roots_of_poly(2)*roots_of_poly(3); % Sum of products taken two at a time

% Display roots

disp(‘Roots of the polynomial:’);

disp(roots_of_poly);

% Display relationship between roots and coefficients of the polynomial

disp(‘Relationships between roots and coefficients:’);

disp([‘Sum of roots: ’, num2str(sum_of_roots), ’, which is the same as ’ ...
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Practical No. 1 Algebra and Trigonometry

’(-coefficient of x^2) / (coefficient of x^3) = ’, num2str(-coeff(2)/coeff(1))]);

disp([‘Sum of the product of roots taken two at a time: ’, num2str

(sum_twoproduct_roots), ...

’, which is the same as (coefficient of x) / (coefficient of x^3) = ’,

num2str(coeff(3)/coeff(1))]);

disp([‘Product of roots: ’, num2str(product_of_roots), ’, which is the same as ’ ...

’(-constant term) / (coefficient of x^3) = ’, num2str(-coeff(4)/coeff(1))]);

Output

Roots of the polynomial:

3.0000

2.0000

1.0000

Relationships between roots and coefficients:

Sum of roots= 6, and (-coefficient of x^2) / (coefficient of x^3) = 6

Sum of the product of roots taken two at a time= 11,

and (coefficient of x) / (coefficient of x^3) = 11

Product of roots= 6, and (-constant term) / (coefficient of x^3) = 6

Conclusion

The MATLAB program verifies the relationships between the roots and coefficients of a
cubic polynomial.

Exercise Problem:

For the given polynomial equation x4 + 4x2 + 5x+ 2 = 0, find the roots of the polynomial
using MATLAB and verify the relationships between the roots and coefficients based on
polynomial theory.
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Algebra and Trigonometry Practical No. 2

Practical No. 2

Aim

To construct a polynomial from given roots and evaluate the polynomial at specified points
using MATLAB. Additionally, plot the polynomial and locate the values of p(x) at any
arbitrary value of x.

Problem

Given the polynomial P (x) of degree 4 with roots i, 1, and 2, find the polynomial using
MATLAB. Compute P (2), P (−2), and P (5), and plot the graph of P (x), locating the
values of P (x) at x = 2, x = −2, and x = 5 on the plot.

Theory

A polynomial of degree 4 with roots r1, r2, r3, r4 can be written as:

P (x) = a(x− r1)(x− r2)(x− r3)(x− r4)

where a is a constant that can be chosen for normalization. If the roots are i, 1, and 2,
then the polynomial can be expressed as:

P (x) = a(x− i)(x+ i)(x− 1)(x− 2)

Since, the roots include i and −i, the term (x− i)(x+ i) = x2+1 can be simplified. So,
the polynomial becomes:

P (x) = a(x2 + 1)(x− 1)(x− 2).

For this problem, a can be assumed to be 1 for simplicity.

Algorithm

Step 1: Define the roots 1, 2, i, and −i in MATLAB;
Step 2: Compute the polynomial coefficients using MATLAB’s poly function;
Step 3: Define the polynomial P (x) using polyval;
Step 4: Compute the values P (2), P (−2), and P (5) using polyval;
Step 5: Plot the polynomial using plot;
Step 6: Mark the points at x = 2, x = −2, and x = 5 with filled markers;
Step 7: Display the polynomial equation and values at x = 2, x = −2, and x = 5.
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Practical No. 2 Algebra and Trigonometry

Program

% Define the roots of the polynomial

roots_given = [1, 2, 1i, -1i];

% Generate the polynomial coefficients from the roots

coeffs_from_roots = poly(roots_given);

% Display the polynomial coefficients

disp(‘Polynomial coefficients from given roots:’);

disp(coeffs_from_roots);

% Define the polynomial function using the coefficients

p = @(x) polyval(coeffs_from_roots, x);

% Calculate the values of p(x) at x = 2, x = -2, x = 5

p_at_2 = p(2);

p_at_minus_2 = p(-2);

p_at_5 = p(5);

% Display the values at these points

disp(‘p(2) =’);

disp(p_at_2);

disp(‘p(-2) =’);

disp(p_at_minus_2);

disp(‘p(5) =’);

disp(p_at_5);

% Plot the polynomial over a specified range

x_vals = linspace(-3, 6, 500); % Generate 500 points for a smooth curve

y_vals = p(x_vals); % Calculate polynomial values at these points

figure; % Open a new figure window

plot(x_vals, y_vals, ’b-’, ’LineWidth’, 1);

% Plot the polynomial in blue with thinner line

hold on;

% Mark the points on the graph at x = 2, x = -2, x = 5 with filled markers

plot(2, p_at_2, ’go’, ‘MarkerFaceColor’, ‘g’); % Point at x = 2 with

green filled circle

plot(-2, p_at_minus_2, ’ro’, ‘MarkerFaceColor’, ‘r’); % Point at x =-2

with red filled circle

plot(5, p_at_5, ‘mo’, ’MarkerFaceColor’, ‘m’); % Point at x = 5 with magenta
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Algebra and Trigonometry Practical No. 3

filled circle

% Add a legend for the points

legend(‘p(x)’, ‘p(2)’, ‘p(-2)’, ‘p(5)’, ‘Location’, ‘best’);

% Label the axes and add title

xlabel(‘x’);

ylabel(‘p(x)’);

title(‘Plot of the Polynomial p(x)’);

% Add grid and set axis limits for better visualization

grid on;

axis([-3 6 -1 350]); % Adjust axis limits for better visualization

hold off;

Output

The polynomial equation is:

p(x) = 1x^3 + -3x^2 + 3x + -3

p(2) =

0

p(-2) =

60

p(5) =

312

Conclusion

The MATLAB program successfully constructs the polynomial from the given roots, eval-
uates the polynomial at specific points, and plots the graph of the polynomial with the
marked points.

Exercise Problem:

Given that p(x) is a polynomial of degree 3 with roots 3, 1, and −1, find the polynomial
expression for p(x) and also compute the value of p(5) using MATLAB.

6



Practical No. 3 Algebra and Trigonometry

Practical No. 3

Aim

To transform a polynomial equation into another equation whose roots are the roots of the
given polynomial equation multiplied by a constant k, and find the roots of both polynomials
using MATLAB.

Problem

Write a MATLAB program that takes a polynomial p(x) = x3 − 6x2 + 11x− 6, transforms
it into a new polynomial q(y) such that the roots of q(y) are the roots of p(x) multiplied
by a constant k = 2, and finds the roots of both polynomials.

Theory

Given a polynomial equation p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 = 0, we wish to
create a transformed polynomial q(y), whose roots will be k times the roots of the original
equation p(x). If x is the root of p(x) and y is the root of q(y), then we have y = kx.
Substituting x = y

k
with k ̸= 0 into p(x), we get:

p
(y
k

)
= an

(y
k

)n

+ an−1

(y
k

)n−1

+ · · ·+ a1

(y
k

)
+ a0 = 0.

By multiplying the entire equation by kn, we obtain the following.

q(y) = any
n + an−1ky

n−1 + · · ·+ a1k
n−1y + a0k

n = 0.

This new polynomial q(y) has roots y = k · x, or equivalently, the roots of the original
polynomial multiplied by k.

Algorithm

Step 1: Define the polynomial p(x) = x3 − 6x2 + 11x− 6 as a vector of coefficients;
Step 2: Specify the constant k by which we want to multiply the roots;
Step 3: Calculate the coefficients of the transformed polynomial q(y);
Step 4: Find the roots of p(x) and q(y) using MATLABs ‘roots‘ function;
Step 5: Display the transformed polynomial and the roots of both polynomials.

Program

% Define the original polynomial p(x) = x^3 - 6x^2 + 11x - 6

p_coefficients = [1, -6, 11, -6];

7



Algebra and Trigonometry Practical No. 3

% Define the constant k

k = 2;

% Initialize an array to hold the transformed polynomial coefficients

q_coefficients = zeros(1, length(p_coefficients));

% Loop through each coefficient and multiply by the appropriate power of k

for i = 1:length(p_coefficients)

power = i-1; % Degree of the term

q_coefficients(i) = p_coefficients(i) * k^power;

end

% Define a symbolic variable y for displaying the polynomial

syms y;

% Convert the coefficients to a symbolic polynomial

q_polynomial = poly2sym(q_coefficients, y);

% Find the roots of the original polynomial p(x)

roots_p = roots(p_coefficients);

% Find the roots of the transformed polynomial q(y)

roots_q = roots(q_coefficients);

% Display the transformed polynomial

disp(‘The transformed polynomial q(y) is:’);

disp(q_polynomial);

% Display the roots of both polynomials

disp(‘Roots of the original polynomial p(x):’);

disp(roots_p);

disp(‘Roots of the transformed polynomial q(y):’);

disp(roots_q);

Output

The transformed polynomial q(y) is:

y^3 - 12*y^2 + 44*y - 48

Roots of the original polynomial p(x):

3.0000

2.0000

1.0000

8



Practical No. 4 Algebra and Trigonometry

Roots of the transformed polynomial q(y):

6.0000

4.0000

2.0000

Conclusion

This MATLAB code successfully transforms the polynomial p(x) = x3 − 6x2 +11x− 6 into
a new polynomial q(y) whose roots are the roots of p(x) multiplied by k = 2. The roots of
both the original and transformed polynomials are calculated and displayed, verifying the
transformation.

Exercise Problem

Transform the polynomial p(x) = x3 − 4x2 + 5x − 1 into another polynomial whose roots
are the roots of the original polynomial multiplied by k = 3. Find and compare the roots
of both polynomials.

Practical No. 4

Aim

To transform a general polynomial equation into another equation whose roots are the roots
of the given polynomial equation multiplied by a constant k, and find the roots of both
polynomials using MATLAB.

Problem

Write a MATLAB program that allows the user to input any polynomial equation and a
constant k. The program should transform the polynomial into a new equation whose roots
are k times the roots of the original polynomial. The program should then find and display
the roots of both the original and the transformed polynomials.

Theory

The transformation process is based on the substitution y = kx, where x x is a root of the
original polynomial, and y is a root of the transformed polynomial. By substituting x = y

k

with k ̸= 0 into the original polynomial p(x), we derive the transformed polynomial q(y).

9



Algebra and Trigonometry Practical No. 4

Algorithm

Step 1: Prompt the user to input the coefficients of p(x) by using the command:
p coefficients = input(‘Coefficients: ’);

Step 2: Prompt the user to input the constant k by using the command: k =

input(’Enter the value of constant k: ’);

Step 3: Initialize an array to store the coefficients of the transformed polynomial q(y) by
using the command: q coefficients = zeros(1, length(p coefficients));

Step 4: Loop through each coefficient of p(x) and multiply it by the appropriate power of
k by using the command:

for i = 1:length(p_coefficients)

power = i-1; % Degree of the term

q_coefficients(i) = p_coefficients(i) * k^power;

end

Step 5: Define a symbolic variable y and convert the coefficients to a symbolic polynomial
by using the command: syms y; q polynomial = poly2sym(q coefficients, y);

Step 6: Find the roots of the original polynomial p(x) by using the command: roots p =

roots(p coefficients);

Step 7: Find the roots of the transformed polynomial q(y) by using the command: roots q

= roots(q coefficients);

Step 8: Display the transformed polynomial and the roots of both polynomials by using
the command:

disp(q_polynomial);

disp(roots_p);

disp(roots_q);

Program

% User inputs

disp(‘Enter the coefficients of the polynomial p(x) (highest to lowest degree):’);

disp(‘Example: For p(x) = 2x^3 + 3x^2 - 5x + 4, enter [2 3 -5 4]’);

p_coefficients = input(’Coefficients: ’);

k = input(‘Enter the value of constant k: ’);

% Initialize an array to hold the transformed polynomial coefficients

q_coefficients = zeros(1, length(p_coefficients));

% Loop through each coefficient and multiply by the appropriate power of k

for i = 1:length(p_coefficients)

power = i-1; % Degree of the term

q_coefficients(i) = p_coefficients(i) * k^power;

end

10



Practical No. 5 Algebra and Trigonometry

% Define a symbolic variable y for displaying the polynomial

syms y;

% Convert the coefficients to a symbolic polynomial

q_polynomial = poly2sym(q_coefficients, y);

% Find the roots of the original polynomial p(x)

roots_p = roots(p_coefficients);

% Find the roots of the transformed polynomial q(y)

roots_q = roots(q_coefficients);

% Display the transformed polynomial

disp(‘The transformed polynomial q(y) is:’);

disp(q_polynomial);

% Display the roots of both polynomials

disp(‘Roots of the original polynomial p(x):’);

disp(roots_p);

disp(‘Roots of the transformed polynomial q(y):’);

disp(roots_q);

Output:

Coefficients: [1,1,-5,3]

Enter the value of constant k: 2

The transformed polynomial q(y) is:

y^3 + 2*y^2 - 20*y + 24

Roots of the original polynomial p(x):

-3.0000 + 0.0000i

1.0000 + 0.0000i

1.0000 - 0.0000i

Roots of the transformed polynomial q(y):

-6.0000 + 0.0000i

2.0000 + 0.0000i

2.0000 - 0.0000i

Conclusion

This MATLAB code allows users to transform any polynomial equation into a new poly-
nomial whose roots are multiplied by a specified constant k. The program successfully
calculates and displays the roots of both the original and transformed polynomials.
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Algebra and Trigonometry Practical No. 5

Practical No. 5

Aim

To transform a polynomial equation into another equation whose roots are the same in
magnitude but opposite in sign of the roots of the given polynomial equation, and find the
roots of both polynomials using MATLAB.

Problem

Write a MATLAB program that takes a polynomial p(x) = x3 − 6x2 + 11x− 6, transforms
it into a new polynomial q(y) such that the roots of q(y) are the same in magnitude but
opposite in sign of the roots of p(x), and finds the roots of both polynomials.

Theory

Given a polynomial equation p(x) = anx
n+an−1x

n−1+ · · ·+a1x+a0 = 0, we wish to create
a transformed polynomial q(y), whose roots will be the negatives of the roots of the original
equation p(x). If x is the root of p(x) and y is the root of q(y), then we have y = −x.

To find the transformed polynomial, we substitute x = −y into the original polynomial
p(x):

p(−y) = an(−y)n + an−1(−y)n−1 + · · ·+ a1(−y) + a0 = 0.

This gives the new polynomial q(y) as:

q(y) = an(−y)n + an−1(−y)n−1 + · · ·+ a1(−y) + a0 = 0.

This polynomial q(y) has roots that are the negatives of the roots of the original poly-
nomial.

Algorithm

Step 1: Define the polynomial p(x) = x3 − 6x2 + 11x− 6 as a vector of coefficients;
Step 2: Substitute x = −y in the polynomial p(x) to get the coefficients of the transformed
polynomial;
Step 3: Find the roots of p(x) and q(y) using MATLABs ‘roots‘ function;
Step 4: Display the transformed polynomial and the roots of both polynomials.

Program

% Define the original polynomial p(x) = x^3 - 6x^2 + 11x - 6

p_coefficients = [1, -6, 11, -6];

12



Practical No. 5 Algebra and Trigonometry

% Initialize an array to hold the transformed polynomial coefficients

q_coefficients = zeros(1, length(p_coefficients));

% Loop through each coefficient and substitute x = -y

for i = 1:length(p_coefficients)

power = length(p_coefficients) - i; % Degree of the term

q_coefficients(i) = p_coefficients(i) * (-1)^power;

end

% Define a symbolic variable y for displaying the polynomial

syms y;

% Convert the coefficients to a symbolic polynomial

q_polynomial = poly2sym(q_coefficients, y);

% Find the roots of the original polynomial p(x)

roots_p = roots(p_coefficients);

% Find the roots of the transformed polynomial q(y)

roots_q = roots(q_coefficients);

% Display the transformed polynomial

disp(‘The transformed polynomial q(y) is:’);

disp(q_polynomial);

% Display the roots of both polynomials

disp(‘Roots of the original polynomial p(x):’);

disp(roots_p);

disp(‘Roots of the transformed polynomial q(y):’);

disp(roots_q);

Output

The transformed polynomial q(y) is:

- y^3 - 6*y^2 - 11*y - 6

Roots of the original polynomial p(x):

3.0000

2.0000

1.0000

Roots of the transformed polynomial q(y):

-3.0000

13



Algebra and Trigonometry Practical No. 6

-2.0000

-1.0000

Conclusion

This MATLAB code successfully transforms the polynomial p(x) = x3 − 6x2 +11x− 6 into
a new polynomial q(y) whose roots are the negatives of the roots of p(x). The roots of
both the original and transformed polynomials are calculated and displayed, verifying the
correctness of the transformation.

Exercise Problem

Transform the polynomial p(x) = x3 − 4x2 + 5x − 1 into another polynomial whose roots
are the negatives of the roots of the original polynomial. Find and compare the roots of
both polynomials.

Practical No. 6

Aim

To transform a polynomial equation into another equation whose roots are the reciprocals
of the roots of the given polynomial equation, and find the roots of both polynomials using
MATLAB.

Problem

Write a MATLAB program that takes a polynomial p(x) = x3 − 6x2 + 11x− 6, transforms
it into a new polynomial q(y) such that the roots of q(y) are the reciprocals of the roots of
p(x), and finds the roots of both polynomials.

Theory

Let the given polynomial p(x) be:

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0.

We want to find a new polynomial q(y), where the roots of q(y) are the reciprocals of
the roots of p(x). Let x ̸= 0 be a root of p(x), and let y be a root of q(y). If y = 1

x
, then

x = 1
y
.

14
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Substituting x = 1
y
into the original polynomial p(x), we get:

p

(
1

y

)
= an

(
1

y

)n

+ an−1

(
1

y

)n−1

+ · · ·+ a1

(
1

y

)
+ a0 = 0.

Multiplying through by yn (the highest power of y) to eliminate denominators, we
obtain:

an + an−1y + an−2y
2 + · · ·+ a1y

n−1 + a0y
n = 0.

Rewriting in standard polynomial form, we have:

q(y) = a0y
n + a1y

n−1 + · · ·+ an−1y + an = 0.

Thus, the coefficients of q(y) are obtained by reversing the order of the coefficients of
p(x).

Algorithm

Step 1: Define the polynomial p(x) = x3 − 6x2 + 11x− 6 as a vector of coefficients;
Step 2: Reverse the order of the coefficients of p(x) to get q(y);
Step 3: Find the roots of p(x) and q(y) using MATLABs ‘roots‘ function;
Step 4: Display the transformed polynomial and the roots of both polynomials.

Program

% Define the original polynomial p(x) = x^3 - 6x^2 + 11x - 6

p_coefficients = [1, -6, 11, -6];

% Reverse the order of the coefficients to get q(y)

q_coefficients = fliplr(p_coefficients);

% Define a symbolic variable y for displaying the polynomial

syms y;

% Convert the coefficients to a symbolic polynomial

q_polynomial = poly2sym(q_coefficients, y);

% Find the roots of the original polynomial p(x)

roots_p = roots(p_coefficients);

% Find the roots of the transformed polynomial q(y)

roots_q = roots(q_coefficients);

% Display the transformed polynomial

disp(‘The transformed polynomial q(y) is:’);

disp(q_polynomial);
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% Display the roots of both polynomials

disp(‘Roots of the original polynomial p(x):’);

disp(roots_p);

disp(‘Roots of the transformed polynomial q(y):’);

disp(roots_q);

Output

The transformed polynomial q(y) is:

y^3 - 11*y^2 + 6*y - 1

Roots of the original polynomial p(x):

1.0000

2.0000

3.0000

Roots of the transformed polynomial q(y):

1.0000

0.5000

0.3333

Conclusion

This MATLAB code successfully transforms the polynomial p(x) = x3 − 6x2 +11x− 6 into
a new polynomial q(y) whose roots are the reciprocals of the roots of p(x). The roots of
both the original and transformed polynomials are calculated and displayed, verifying the
correctness of the transformation.

Exercise Problem

Transform the polynomial p(x) = x3 − 4x2 + 5x − 1 into another polynomial whose roots
are the reciprocals of the roots of the original polynomial. Find and compare the roots of
both polynomials.

Practical No. 7

Aim

To verify De-Moivre’s Theorem for a complex number in polar form and apply it to calculate
powers and roots.

16
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Problem

Verify De-Moivres Theorem for the complex number z = 1 + i for n = 5. Specifically,
calculate z5 using De Moivres Theorem and compare it with the result obtained from
direct computation using MATLAB.

Theory

De-Moivres Theorem states that for any complex number in polar form z = r(cos θ+ i sin θ)
and any integer n, we have:

zn = rn (cos(nθ) + i sin(nθ)) .

This theorem is useful for computing higher powers and roots of complex numbers.

Algorithm

Step 1: Define the complex number z = 1 + i;
Step 2: Convert z to polar form z = r(cos θ + i sin θ), where r = |z| and θ = arg(z).
Compute r and θ using the commands abs(z) and angle(z) respectively;
Step 3: For a given power n, calculate rn and nθ and use De Moivre’s Theorem to compute
zn;
Step 4: Calculate z5 directly using Matlab’s power function;
Step 5: Use the command round in MATLAB to round off both the real and imaginary
parts of the complex number to three decimal places;
Step 6: Display the result using command disp.

Program

% Define the complex number

z = 1 + 1i;

% Step 1: Convert to polar form

r = abs(z); % Modulus of z

theta = angle(z); % Argument of z

% Step 2: Apply De Moivre’s Theorem for n = 5

n = 5;

r_n = r^n; % Raise modulus to the power of n

theta_n = n * theta; % Multiply argument by n

% Step 3: Calculate z^5 using De Moivre’s Theorem

z_power_demov = r_n * (cos(theta_n) + 1i * sin(theta_n));

17
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% Step 4: Calculate z^5 directly to verify

z_power_direct = z^n;

% Round off upto three decimal places

z_power_demov_round=round(z_power_demov,3);

z_power_direct_round=round(z_power_direct,3);

% Display the results

disp(‘The value of z^5 using De Moivre’’s Theorem is:’);

disp(z_power_demov_round);

disp(‘The value of z^5 using direct calculation is:’);

disp(z_power_direct_round);

Output

The value of z^5 using De Moivre’s Theorem is:

-4 + 4i

The value of z^5 using direct calculation is:

-4 + 4i

Conclusion

De Moivres Theorem applied to calculate z5 for z = 1 + i, and the results from both the
theorem and direct computation in MATLAB matched, validating the theorem’s accuracy.

Exercise Problem

Verify De Moivres Theorem for the complex number z = −1 + i for n = 6. Specifically,
calculate z6 using De Moivres Theorem and compare it with the result obtained from direct
computation with help of MATLAB.

Practical No. 8

Aim

To use De Moivres Theorem to find the n-th roots of a complex number.

Problem

Find the fourth roots of z = 16 using De Moivres Theorem.

18
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Theory

De Moivres Theorem states that for a complex number z = r(cos θ+ i sin θ), the n-th roots
are given by:

zk = r1/n
(
cos

(
θ + 2kπ

n

)
+ i sin

(
θ + 2kπ

n

))
.

where k = 0, 1, . . . , n− 1. This theorem is useful for finding the roots of complex numbers
in polar form.

Algorithm

Step 1: Define z = 16 using z = 16;.
Step 2: Calculate modulus r with r = abs(z); and argument θ with theta = angle(z);.
Step 3: Set n = 4 using n = 4;.
Step 4: For k = 0, 1, 2, 3, adjust angle with theta k = (theta + 2 * k * pi) / n; and
calculate each root using root k = r(1/n) ∗ (cos(theta k) + 1i ∗ sin(theta k));.
Step 5: Round each root to three decimals with root k round = round(root k, 3);.
Step 6: Display each root using disp([‘Root ’, num2str(k+1),‘: ’,num2str(root k round)]);.

Program

% Define the complex number (can be any complex number)

z = 16; % Example: z = 1 + i

% Step 1: Convert to polar form

r = abs(z); % Modulus of z

theta = angle(z); % Argument (angle) of z

% Step 2: Set the value of n for n-th roots (change n as needed)

n = 4; % Example: for 4th roots

% Step 3: Calculate each n-th root

disp([‘The ’, num2str(n), ’-th roots of z are:’]);

for k = 0:n-1

theta_k = (theta + 2 * k * pi) / n; % Adjust argument for each root

root_k = r^(1/n) * (cos(theta_k) + 1i * sin(theta_k)); % Calculate root

root_k_round = round(root_k, 3); % Round to 3 decimal places

disp([‘Root ’, num2str(k+1), ‘: ’, num2str(root_k_round)]); % Display the root

end
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Output

The 4-th roots of z are:

Root 1: 2

Root 2: 0+2i

Root 3: -2

Root 4: 0-2i

Conclusion

In this practical, we used De Moivre’s Theorem to find the fourth roots of the complex
number z = 2. The four fourth roots were successfully calculated using the theorem.

Exercise Problem

Using De Moivres Theorem, find the fifth roots of z = 32
(
cos π

6
+ i sin π

6

)
.

Practical No. 9

Aim

To compute the values of the direct circular functions sin z, cos z, and tan z for a given
complex number z = x+ yi and analyze their behavior.

Problem

Compute the values of the circular functions sin z, cos z, and tan z for z = 1 + 2i and
z = −1 + 3i using MATLAB. Then, compare these results with the values obtained from
the theoretical formulas for sin z, cos z, and tan z where z = x+ yi.

Theory

For a complex number z = x + yi, where x and y are real numbers, the circular functions
are given by:

sin z = sin(x+ yi) = sin(x) cosh(y) + i cos(x) sinh(y)

cos z = cos(x+ yi) = cos(x) cosh(y)− i sin(x) sinh(y)
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Algorithm

Step 1: Define the complex numbers z = 1 + 2i and z = −1 + 3i;
Step 2: Compute sin z, cos z, and tan z using both MATLABs built-in functions and the
theoretical formulas;
Step 3: Write the theoretical formulas of sin z, cos z, tan z;
Step 4: Display the results using the disp command.

Program

% Define the complex numbers

z1 = 1 + 2i;

z2 = -1 + 3i;

% Direct calculation using MATLAB’s built-in functions

sin_z1_direct = sin(z1);

cos_z1_direct = cos(z1);

tan_z1_direct = tan(z1);

sin_z2_direct = sin(z2);

cos_z2_direct = cos(z2);

tan_z2_direct = tan(z2);

% Calculation by formula (theoretical)

x1 = real(z1); y1 = imag(z1);

x2 = real(z2); y2 = imag(z2);

% Theoretical sin, cos, and tan for z1

sin_z1_formula = sin(x1) * cosh(y1) + 1i * cos(x1) * sinh(y1);

cos_z1_formula = cos(x1) * cosh(y1) - 1i * sin(x1) * sinh(y1);

tan_z1_formula = sin_z1_formula / cos_z1_formula;

% Theoretical sin, cos, and tan for z2

sin_z2_formula = sin(x2) * cosh(y2) + 1i * cos(x2) * sinh(y2);

cos_z2_formula = cos(x2) * cosh(y2) - 1i * sin(x2) * sinh(y2);

tan_z2_formula = sin_z2_formula / cos_z2_formula;

% Display results for z1

disp([‘For z = ’, num2str(z1), ’:’]);

disp([‘sin(z) (Direct) = ’, num2str(sin_z1_direct)]);

disp([‘sin(z) (By formula) = ’, num2str(sin_z1_formula)]);

disp([‘cos(z) (Direct) = ’, num2str(cos_z1_direct)]);

disp([‘cos(z) (By formula) = ’, num2str(cos_z1_formula)]);

disp([‘tan(z) (Direct) = ’, num2str(tan_z1_direct)]);
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disp([‘tan(z) (By formula) = ’, num2str(tan_z1_formula)]);

% Display results for z2

disp([‘For z = ’, num2str(z2), ’:’]);

disp([‘sin(z) (Direct) = ’, num2str(sin_z2_direct)]);

disp([‘sin(z) (By formula) = ’, num2str(sin_z2_formula)]);

disp([‘cos(z) (Direct) = ’, num2str(cos_z2_direct)]);

disp([‘cos(z) (By formula) = ’, num2str(cos_z2_formula)]);

disp([‘tan(z) (Direct) = ’, num2str(tan_z2_direct)]);

disp([‘tan(z) (By formula) = ’, num2str(tan_z2_formula)]);

Output

For z = 1+2i:

sin(z) (Direct) = 3.1658+1.9596i

sin(z) (By formula) = 3.1658+1.9596i

cos(z) (Direct) = 2.0327-3.0519i

cos(z) (By formula) = 2.0327-3.0519i

tan(z) (Direct) = 0.033813+1.0148i

tan(z) (By formula) = 0.033813+1.0148i

For z = -1+3i:

sin(z) (Direct) = -8.47165+5.41268i

sin(z) (By formula) = -8.47165+5.41268i

cos(z) (Direct) = 5.43958+8.42975i

cos(z) (By formula) = 5.43958+8.42975i

tan(z) (Direct) = -0.0045171+1.0021i

tan(z) (By formula) = -0.0045171+1.0021i

Conclusion

This practical demonstrated how to compute the values of circular functions sin z, cos z,
and tan z for complex numbers using MATLAB.

Exercise Problem

Compute the values of sin z, cos z, and tan z for complex numbers z = 3 + 4i, z = −2 + i,
and z = 0.5− 1.5i.

Practical No. 10
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Aim

To plot the values of the direct circular function sin z, cos z, and tan z for a range of complex
numbers z using MATLAB.

Problem

Plot sin z for a grid of complex numbers z = x + yi, where x and y vary from −2 to 2.
Create separate surface plots for the real and imaginary parts of sin z to observe how they
behave over this range of complex numbers.

Theory

In MATLAB, we can evaluate and plot the real and imaginary part of the complex functions
like sin z, cos z, and tan z over a grid of complex numbers.

Algorithm

Step 1: Set the range for x and y from -2 to 2 with a step size of 0.1:

x = −2 : 0.1 : 2; y = −2 : 0.1 : 2;

Step 2: Use meshgrid to create a grid for x and y, then form complex numbers z = x+ iy:

[X, Y ] = meshgrid(x, y); Z = X + iY ;

Step 3: Calculate sin z using sin function:

sin Z = sin(Z);

Step 4: Plot the real and imaginary part of sin z using command surf.

Program

% Define the range for real and imaginary parts

x = -2:0.1:2;

y = -2:0.1:2;

% Create a mesh grid of complex numbers

[X, Y] = meshgrid(x, y);

Z = X + 1i * Y;

% Calculate sin(Z)
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sin_Z = sin(Z);

% Plot real part of sin(Z)

figure;

surf(X, Y, real(sin_Z));

title(‘Real Part of sin(z)’);

xlabel(‘Real part of z’);

ylabel(‘Imaginary part of z’);

zlabel(‘Real part of sin(z)’);

colormap jet;

colorbar;

shading interp;

% Plot imaginary part of sin(Z)

figure;

surf(X, Y, imag(sin_Z));

title(‘Imaginary Part of sin(z)’);

xlabel(‘Real part of z’);

ylabel(‘Imaginary part of z’);

zlabel(‘Imaginary part of sin(z)’);

colormap jet;

colorbar;

shading interp;

Output

The surface plots of the real and imaginary parts of sin z are shown below:
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Figure 1.1: Imaginary part of sin z over the grid of complex numbers

Figure 1.2: Real part of sin z over the grid of complex numbers
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Conclusion

With the help of this program, we can plot surface plots of the real and imaginary parts of
sin z, which illustrate the behavior of the sine function over the defined range of complex
values.

Exercise Problem

Plot the the real and imaginary parts of cos z for z in the same range.

Practical No. 11

Aim

To explore the relationship between complex exponential and circular functions sin z and
cos z using Euler’s formula. Compute the values of sin z and cos z for various complex
numbers and verify them using Euler’s identity.

Problem

Given a complex number z = x + yi, use Euler’s formula to express sin z and cos z as
complex exponentials:

eiz = cos z + i sin z.

Compute sin z and cos z for the values z = 2+3i and z = 1− 2i using both Eulers formula
and MATLAB’s built-in functions, and verify their consistency.

Theory

Euler’s formula states that for any real number θ:

eiθ = cos(θ) + i sin(θ).

For complex numbers, this formula allows us to compute sin z and cos z for z = x + yi as
follows:

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
.

Algorithm

Step 1: Define the complex numbers z = 2 + 3i and z = 1− 2i;
Step 2: Calculate sin z and cos z using Euler’s formula:

cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
;
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Step 3: Calculate sin z and cos z using MATLABs functions, sin(z) and cos(z);
Step 4: Compare the results to verify if the values from Eulers formula and MATLAB’s
function match.

Program

% Define the complex numbers

clear all;

close all;

z1 = 2 + 3i;

z2 = 1 - 2i;

% Calculate sin(z) and cos(z) using Euler’s formula

sin_z1_euler = (exp(1i*z1) - exp(-1i*z1)) / (2i);

cos_z1_euler = (exp(1i*z1) + exp(-1i*z1)) / 2;

sin_z2_euler = (exp(1i*z2) - exp(-1i*z2)) / (2i);

cos_z2_euler = (exp(1i*z2) + exp(-1i*z2)) / 2;

% Calculate sin(z) and cos(z) using MATLAB’s functions

sin_z1_matlab = sin(z1);

cos_z1_matlab = cos(z1);

sin_z2_matlab = sin(z2);

cos_z2_matlab = cos(z2);

% Display results

disp([‘For z = ’, num2str(z1), ’:’]);

disp([‘sin(z) using Eulers formula = ’, num2str(sin_z1_euler)]);

disp([‘sin(z) using direct MATLAB command = ’, num2str(sin_z1_matlab)]);

disp([‘cos(z) using Eulers formula = ’, num2str(cos_z1_euler)]);

disp([‘cos(z) using direct MATLAB command = ’, num2str(cos_z1_matlab)]);

disp([‘For z = ’, num2str(z2), ’:’]);

disp([‘sin(z) using Eulers formula = ’, num2str(sin_z2_euler)]);

disp([‘sin(z) using direct MATLAB command = ’, num2str(sin_z2_matlab)]);

disp([‘cos(z)using Eulers formula = ’, num2str(cos_z2_euler)]);

disp([‘cos(z) using direct MATLAB command = ’, num2str(cos_z2_matlab)]);

Output

For z = 2+3i:

sin(z) using Eulers formula = 9.1545-4.16891i
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sin(z) using direct MATLAB command = 9.1545-4.16891i

cos(z) using Eulers formula = -4.18963-9.10923i

cos(z) using direct MATLAB command = -4.18963-9.10923i

For z = 1-2i:

sin(z) using Eulers formula = 3.1658-1.9596i

sin(z) using direct MATLAB command = 3.1658-1.9596i

cos(z)using Eulers formula = 2.0327+3.0519i

cos(z) using direct MATLAB command = 2.0327+3.0519i

Conclusion

This practical demonstrated the link between circular functions and complex exponentials
using Eulers formula. The values of sin z and cos z obtained from Eulers formula matched
MATLAB’s built-in function outputs, confirming the relationship between exponential and
circular functions in the complex domain.

Exercise Problem

For each complex number z = 3+4i and z = −2+3i, calculate sin z and cos z using Eulers
formula and MATLAB functions, and verify the results.

Practical No. 12

Aim

To compute specific mathematical expressions involving the real and imaginary parts of
complex trigonometric functions using MATLAB.

Problem

Given tan(α+ iβ) = x+ iy, where α and β are real numbers, and x and y are the real and
imaginary parts of tan(α+ iβ), compute the value of x2 + y2 + 2x cot(2α) using MATLAB
with α = π

4
, and β = 1.

Theory

By solving the expresion theoretically tan(α+iβ) = x+iy, we will get x2+y2+2x cot(2α) =
1.
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Algorithm

Step 1: Define the valurs of α and β;
Step 2: Calculate tan(α + iβ) by using MATLAB’s built-in tan function;
Step 3: Seperate the real and imaginary parts by Using MATLABs real and imag func-
tions to get x and y, the real and imaginary parts of the complex tangent function;
Step 4:Compute the desired expression x2 + y2 + 2x cot(2α);
Step 5: Display the calculated expression by using disp command.

Program

% Define the real and imaginary parts of the complex number (alpha, beta)

alpha = pi/4; % example value for alpha

beta = 1; % example value for beta

% Calculate the tangent of (alpha + i*beta)

z = tan(alpha + 1i*beta);

% Extract the real and imaginary parts of tan(alpha + i*beta)

x = real(z);

y = imag(z);

% Compute the desired expression: x^2 + y^2 + 2x * cot(2*alpha)

result = x^2 + y^2 + 2*x * cot(2*alpha);

% Display the result

disp([‘The value of x^2 + y^2 + 2x * cot(2*alpha) is: ’, num2str(result)]);

Expected Output

The value of x^2 + y^2 + 2x * cot(2*alpha) is: 1

Conclusion

The code provide the correct value of the expression.

Exercise Problem

Given sin(ϕ+ iψ) = a+ ib, where ϕ and ψ are real numbers, and a and b are the real and
imaginary parts of sin(ϕ + iψ), compute the value of a2 + b2 + 2a cos(2ϕ) using MATLAB
with ϕ = π

6
and ψ = 1.
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Practical No. 13

Aim

To compute the hyperbolic functions sinh z, cosh z, and tanh z for a given complex number
z = x+ iy.

Problem

Compute the values of the hyperbolic functions sinh z, cosh z, and tanh z for z = 2+2i and
z = −5 + 3i using MATLAB.

Theory

The hyperbolic functions for a complex number z = a+ ib are defined as follows:

sinh(z) =
ez − e−z

2
;

cosh(z) =
ez + e−z

2
;

tanh(z) =
sinh(z)

cosh(z)
=
ez − e−z

ez + e−z
.

Algorithm

Step1 : Define the complex numbers z1 = 2 + 2i and z2 = −5 + 3i;
Step 2: Compute sinh z, cosh z, and tanh z using MATLAB’s built-in functions with the
commands sinh(z), cosh(z), and tanh(z) respectively;
Step 3: Display the results using the disp command.

Program

% Define the complex numbers

z1 = 2 + 2i;

z2 = -5 + 3i;

% Calculate and display for z1

fprintf(’For z = 2 + 2i:\n’);

sinh_z1 = sinh(z1);

cosh_z1 = cosh(z1);

tanh_z1 = tanh(z1);
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% Display results for z1

disp([‘sinh(z): ’, num2str(real(sinh_z1)), ‘ + ’, num2str(imag(sinh_z1)), ’i’]);

disp([‘cosh(z): ’, num2str(real(cosh_z1)), ‘ + ’, num2str(imag(cosh_z1)), ’i’]);

disp([‘tanh(z): ’, num2str(real(tanh_z1)), ‘ + ’, num2str(imag(tanh_z1)), ’i’]);

% Calculate and display for z2

fprintf(’\nFor z = -5 + 3i:\n’);

sinh_z2 = sinh(z2);

cosh_z2 = cosh(z2);

tanh_z2 = tanh(z2);

% Display results for z2

disp([‘sinh(z): ’, num2str(real(sinh_z2)), ‘ + ’, num2str(imag(sinh_z2)), ’i’]);

disp([‘cosh(z): ’, num2str(real(cosh_z2)), ‘ + ’, num2str(imag(cosh_z2)), ’i’]);

disp([‘tanh(z): ’, num2str(real(tanh_z2)), ‘ + ’, num2str(imag(tanh_z2)), ’i’]);

Output

For z = 2 + 2i:

sinh(z): -1.5093 + 3.421i

cosh(z): -1.5656 + 3.2979i

tanh(z): 1.0238 + -0.028393i

For z = -5 + 3i:

sinh(z): 73.4606 + 10.4725i

cosh(z): -73.4673 + -10.4716i

tanh(z): -0.99991 + -2.5369e-05i

Conclusion

With this MATLAB code, we can compute the hyperbolic function values for a given
complex number.

Exercise Problem

Compute the value of the function sinh z + 8 cosh z − 2 tanh2 z for z = i and z = −8 + 3i
using MATLAB.

Practical No. 14
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Aim

To plot the real and imaginary parts of the hyperbolic sine function for a complex number
z using MATLAB.

Problem

Write a MATLAB program to plot the real and imaginary parts of the hyperbolic sine
function sinh(z) for a complex variable z = x + iy, where x and y are real numbers. Plot
the real and imaginary parts separately for x in the range [−10, 10] and y in the range
[−10, 10].

Theory

The hyperbolic sine function for a complex number z = x + iy (where i is the imaginary
unit) is defined as:

sinh(z) =
ez − e−z

2
.

Substituting z = x+ iy, we get:

sinh(x+ iy) =
ex+iy − e−x−iy

2
.

Using the properties of exponential and Euler’s formula, we can break it down into its
real and imaginary parts:

sinh(x+ iy) = sinh(x) cos(y) + i cosh(x) sin(y).

Algorithm

Step 1: Define the range for x and y values for which the graph will be plotted;
Step 2: Compute the real and imaginary parts of sinh(x+ iy) using the above formulas;
Step 3: Plot the real and imaginary parts separately using MATLAB’s ‘surf‘ command;
Step 4: Add appropriate labels, titles, and grid to the graph for better visualization.

Program

% Define the range for x and y values

[x, y] = meshgrid(linspace(-10, 10, 400), linspace(-10, 10, 400));

% Calculate the real and imaginary parts of sinh(x + iy)

real_part = sinh(x) .* cos(y); % Real part: sinh(x) * cos(y)
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imag_part = cosh(x) .* sin(y); % Imaginary part: cosh(x) * sin(y)

% Plot the real part of sinh(x + iy)

figure;

surf(x, y, real_part); % Create a 3D surface plot

colormap jet; % Set the colormap to ’jet’ for a colorful plot

shading interp; % Apply interpolation shading for smooth surface

title(‘Real Part of sinh(x + iy)’, ‘FontSize’, 14);

xlabel(‘x’, ‘FontSize’, 12);

ylabel(‘y’, ‘FontSize’, 12);

zlabel(‘Real Part’, ‘FontSize’, 12);

colorbar; % Display color bar to show value scale

grid on; % Enable grid for better visibility

lighting gouraud; % Apply Gouraud lighting for smoother shading

view(3); % Set the default 3D view angle

% Plot the imaginary part of sinh(x + iy)

figure;

surf(x, y, imag_part); % Create a 3D surface plot

colormap hot; % Set the colormap to ’hot’ for a different color theme

shading interp; % Apply interpolation shading for smooth surface

title(’Imaginary Part of sinh(x + iy)’, ’FontSize’, 14);

xlabel(‘x’, ‘FontSize’, 12);

ylabel(‘y’, ‘FontSize’, 12);

zlabel(‘Imaginary Part’, ‘FontSize’, 12);

colorbar; % Display color bar to show value scale

grid on; % Enable grid for better visibility

lighting gouraud; % Apply Gouraud lighting for smoother shading

view(3); % Set the default 3D view angle

Output

The output will consist of two 3D surface plots which are given by Figure 1.3, 1.4
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Figure 1.3: Imaginary part of sinh z over the grid of complex numbers

Figure 1.4: Real part of sinh z over the grid of complex numbers
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Conclusion

This MATLAB code successfully computes and plots the real and imaginary parts of the
hyperbolic sine function for a complex number z = x+ iy over specified ranges of x and y.
The plots provide a clear visualization of how the real and imaginary components of sinh(z)
behave in the complex plane, showcasing their dependence on both the real and imaginary
parts of z.

Exercise Problem

Modify the program to plot the real and imaginary parts of the hyperbolic cosine function
cosh(z) for the same ranges of x and y. Compare the plots of sinh(z) and cosh(z), and
describe their similarities and differences.

Practical No. 15

Aim

To compute the inverse circular functions sin−1 z, cos−1 z, and tan−1 z for a given complex
number z = x+ iy.

Problem

Compute the values of the inverse circular functions sin−1 z, cos−1 z, and tan−1 z for z =
2 + 2i and z = −5 + 3i using MATLAB.

Theory

For a complex number z = x+iy, the inverse trigonometric functions are defined as follows:

• If sin(α + iβ) = x+ iy, then α + iβ is called the inverse sine of z, denoted sin−1 z.

• If cos(α+ iβ) = x+ iy, then α+ iβ is called the inverse cosine of z, denoted cos−1 z.

• If tan(α+ iβ) = x+ iy, then α+ iβ is called the inverse tangent of z, denoted tan−1 z.

These inverse functions return the complex angle α+ iβ whose sine, cosine, or tangent
equals the given complex number z = x+ iy.

Algorithm

Step1: Define the complex numbers z1 = 2 + 2i and z2 = −5 + 3i;
Step2: Compute sin−1 z, cos−1 z, and tan−1 z using MATLABs built-in functions;
Step3: Display the results using the disp command.

35



Algebra and Trigonometry Practical No. 15

Program

clear all;

close all;

% Define the complex numbers

z1 = 2 + 2i;

z2 = -5 + 3i;

% Calculate and display for z1

disp(’For z = 2 + 2i:’);

asin_z1 = asin(z1);

acos_z1 = acos(z1);

atan_z1 = atan(z1);

% Display results for z1

disp([‘sin^-1(z)$: ’,num2str(asin_z1)]);

disp([‘cos^-1(z): ’, num2str(acos_z1)]);

disp([‘tan^-1(z): ’, num2str(atan_z1)]);

% Calculate and display for z2

disp(‘For z = -5 + 3i:’);

asin_z2 = asin(z2);

acos_z2 = acos(z2);

atan_z2 = atan(z2);

% Display results for z2

disp([‘sin^-1(z): ’,num2str(asin_z2)]);

disp([‘cos^-1(z): ’, num2str(acos_z2)]);

disp([‘tan^{-1}(z): ’, num2str(atan_z2)]);

Output

For z = 2 + 2i:

For z = 2 + 2i:

sin^-1(z)$: 0.75425+1.7343i

cos^-1(z): 0.81655-1.7343i

tan^-1(z): 1.3112+0.23888i

For z = -5 + 3i:

sin^-1(z): -1.0238+2.4529i

cos^-1(z): 2.5946-2.4529i

tan^-1(z): -1.4237+0.086569i
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Conclusion

With this MATLAB code, we can compute the values of the inverse circular functions for
a given complex number.

Exercise Problem

Compute the value of the function 5 sin−1 z+18 cos−1 z−2 tan−1 z for z = i and z = −8+3i
using MATLAB.

Practical No. 16

Aim

To compute the inverse hyperbolic functions sinh−1 z, cosh−1 z, and tanh−1 z for a given
complex number z = x+ iy and verify their results using logarithmic expressions.

Problem

Write a matlab code to compute the values of the inverse hyperbolic functions sinh−1 z,
cosh−1 z, and tanh−1 z for any given value of z. Verify the results by comparing them with
the logarithmic definitions:

sinh−1(z) = ln(z +
√
z2 + 1),

cosh−1(z) = ln(z +
√
z2 − 1),

tanh−1(z) =
1

2
ln

(
1 + z

1− z

)
.

Theory

For a complex number z = x+ iy, the inverse hyperbolic functions are defined as follows:

• If sinh(α+ iβ) = x+ iy, then α+ iβ is called the inverse hyperbolic sine of z, denoted
sinh−1 z.

• If cosh(α + iβ) = x + iy, then α + iβ is called the inverse hyperbolic cosine of z,
denoted cosh−1 z.

• If tanh(α + iβ) = x + iy, then α + iβ is called the inverse hyperbolic tangent of z,
denoted tanh−1 z.
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The inverse hyperbolic functions can also be expressed in logarithmic forms:

sinh−1(z) = ln(z +
√
z2 + 1),

cosh−1(z) = ln(z +
√
z2 − 1),

tanh−1(z) =
1

2
ln

(
1 + z

1− z

)
.

Algorithm

Step1: Define the complex number z using the input command;
Step2: Compute sinh−1 z, cosh−1 z, and tanh−1 z using MATLABs built-in functions;
Step3: Verify the results by calculating each inverse function using their logarithmic defi-
nitions;
Step4: Display the results and verification outcomes using the disp command.

Program

% Step 1: Prompt user for complex number input

z = input(’Enter a complex number in the form x + yi: ’);

% Step 2: Compute inverse hyperbolic functions using MATLABs built-in functions

asinh_z = asinh(z); % Inverse hyperbolic sine

acosh_z = acosh(z); % Inverse hyperbolic cosine

atanh_z = atanh(z); % Inverse hyperbolic tangent

% Step 3: Display the computed results

disp(‘Computed Inverse Hyperbolic Function Values for z:’);

disp([‘asinh(z): ’, num2str(asinh_z)]);

disp([‘acosh(z): ’, num2str(acosh_z)]);

disp([‘atanh(z): ’, num2str(atanh_z)]);

% Step 4: Verification using logarithmic expressions

disp(‘Verification of Inverse Hyperbolic Functions using Logarithmic

Expressions:’);

disp([‘asinh(z) calculated as ln(z + sqrt(z^2 + 1)): ’, num2str(log(z + sqrt(z^2

+ 1)))]);

disp([‘acosh(z) calculated as ln(z + sqrt(z^2 - 1)): ’, num2str(log(z + sqrt(z^z

- 1)))]);

disp([‘atanh(z) calculated as 0.5 * ln((1 + z) / (1 - z)): ’, num2str(0.5 * log

((1 + z) / (1 - z)))]);
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Output

Enter a complex number in the form x + yi: 2+5i

Computed Inverse Hyperbolic Function Values for z:

asinh(z): 2.3705+1.1842i

acosh(z): 2.383+1.1961i

atanh(z): 0.067066+1.3993i

Verification of Inverse Hyperbolic Functions using Logarithmic Expressions:

asinh(z) calculated as ln(z + sqrt(z^2 + 1)): 2.3705+1.1842i

acosh(z) calculated as ln(z + sqrt(z^2 - 1)): 2.383+1.1961i

atanh(z) calculated as 0.5 * ln((1 + z) / (1 - z)): 0.067066+1.3993i

Conclusion

This MATLAB code successfully computes the values of the inverse hyperbolic functions
sinh−1 z, cosh−1 z, and tanh−1 z for a given complex number z. The results are verified using
their logarithmic expressions, confirming the accuracy of MATLABs built-in functions.

Exercise Problem

Compute the value of the function

5 sinh−1 z + 18 cosh−1 z − 2 tanh−1 z

for z = 9 + 5i and z = −8 + 3i using MATLAB.

Practical No. 17

Aim

To compute the logarithm of a complex number z = x + iy and verify the logarithmic
formula ln z = ln |z|+ i arg(z) using MATLAB.

Problem

Write a MATLAB program that takes a complex number as input from the user, calculates
the natural logarithm ln z, base-10 logarithm log10 z, and base-2 logarithm log2 z for the
given number, and verifies that ln z = ln |z|+ i arg(z) holds true.
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Theory

For a complex number z = x+ iy, the logarithmic functions are defined as:

• The natural logarithm ln z is given by:

ln z = ln |z|+ i arg(z),

where |z| =
√
x2 + y2 and arg(z) = tan−1(y/x).

• The base-10 logarithm log10 z is computed as:

log10 z =
ln z

ln 10
.

• The base-2 logarithm log2 z is computed as:

log2 z =
ln z

ln 2
.

Verification involves calculating ln |z|+ i arg(z) and comparing it with MATLABs built-
in ln z for accuracy.

Algorithm

Step 1: Prompt the user to input a complex number z = x+ iy;
Step 2: Calculate ln z, log10 z, and log2 z;
Step 3: Verify ln z = ln |z|+ i arg(z) by computing each side and comparing;
Step 4: Display all results.

Program

% Prompt user for complex number input

z = input(’Enter a complex number in the form x + yi: ’);

% Calculate logarithmic values

ln_z = log(z); % Natural logarithm

log10_z = log10(z); % Base-10 logarithm

log2_z = log(z) / log(2); % Base-2 logarithm

% Display logarithmic results

disp(‘Computed Logarithmic Values:’);

disp([‘ln(z): ’, num2str(ln_z)]);

disp([‘log10(z): ’, num2str(log10_z)]);

disp([‘log2(z): ’, num2str(log2_z)]);
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% Verification of logarithmic formula

modulus_z = abs(z); % Compute |z|

argument_z = angle(z); % Compute arg(z)

ln_z_formula = log(modulus_z) + 1i * argument_z; % Formula-based calculation

% Display verification results

disp(‘Verification of ln(z) = ln|z| + i * arg(z):’);

disp([‘ln(z) by MATLAB inbuilt function: ’, num2str(ln_z)]);

disp([‘ln(z) using formula: ’, num2str(ln_z_formula)]);

if abs(ln_z - ln_z_formula) < 1e-10

disp(‘Verification successful: Both methods agree.’);

else

disp(‘Verification failed: Results do not match.’);

end

Output

Enter a complex number in the form x + yi: 4+3i

Computed Logarithmic Values:

ln(z): 1.6094+0.6435i

log10(z): 0.69897+0.27947i

log2(z): 2.3219+0.92838i

Verification of ln(z) = ln|z| + i * arg(z):

ln(z) by MATLAB inbuilt function: 1.6094+0.6435i

ln(z) using formula: 1.6094+0.6435i

Verification successful: Both methods agree.

Conclusion

This MATLAB code successfully computes the natural and base-specific logarithms for
any given complex number and verifies that ln z = ln |z| + i arg(z) holds, supporting the
theoretical formulation.

Exercise Problem

Compute 2 ln z + 3 log10 z − log2 z for z = −3 + 7i and z = 4− 5i using MATLAB.

Practical No. 18
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Aim

To approximate the value of π using the Gregory series for different values of N , and plot
the error in approximation as a function of N using MATLAB.

Problem

Write a MATLAB program to calculate an approximation of π using the Gregory series:

π ≈ 4
N∑
k=0

(−1)k

2k + 1

for a given N .
Specifically, compute the approximation for N ranging from 10000 to 150000 with a

step size of 1000. Plot a graph showing the error (the absolute difference between the
approximation and MATLAB’s built-in value of π) as a function of N .

Theory

The Gregory series is an infinite series that approximates π as:

π = 4

(
1− 1

3
+

1

5
− 1

7
+ · · ·

)
The accuracy of this approximation improves as N increases, but convergence is slow.
Plotting the error as a function of N reveals the convergence pattern and shows how the
approximation stabilizes as N grows.

Algorithm

Step 1: Define N values (starting from 10000 and incrementing by 100 up to the maximum
N):

N_values = 10000:1000:max_N;

Step 2: Initialize an empty array to store the errors:

errors = zeros(size(N_values));

Step 3: For each N in the defined range calculate the Gregory series approximation of π
using the formula.
Step 4: Calculate the absolute error with MATLABs built-in π:

errors(i) = abs(pi - pi_approx);

Step 5: Plot the error as a function of N using a logarithmic scale.
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Program

% Define a range of N values (from 100 up to a desired maximum in steps of 100)

max_N = 150000; % Set the maximum value of N

N_values = 10000:100:max_N;

errors = zeros(size(N_values));

% Calculate Gregory series approximation and error for each N

for i = 1:length(N_values)

N = N_values(i);

pi_approx = 0;

for k = 0:N

pi_approx = pi_approx + ((-1)^k) / (2*k + 1);

end

pi_approx = 4 * pi_approx; % Multiply by 4 as per series definition

errors(i) = abs(pi - pi_approx); % Absolute error with MATLABs pi

end

% Plot the error as a function of N

figure;

semilogy(N_values, errors, ’-*’); % semilogy for better visualization

xlabel(‘Number of Terms (N)’);

ylabel(‘Absolute Error’);

title(‘Error in Gregory Series Approximation of \pi’);

grid on;

Output

After running the program, the plot will display how the absolute error decreases with
increasing N .
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Figure 1.5: Error in Gregory Series Approximation of π as a function of N

Conclusion

The plot reveals that the Gregory series slowly converges to π as N increases. Large values
of N are required to achieve a low error, illustrating the slow convergence of the series.

Exercise Problem

Using the program, find the error in the approximation of π for N = 10000.

Matrices

Practical No. 19

Aim

To write a program to find the determinant of a given matrix.
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Problem

Write a program to compute the determinant of the matrix

A =

2 3 1
4 1 2
3 2 5

 .

Theory

The determinant of a matrix is a scalar value that can be computed from the elements of a
square matrix. It is used in many areas of linear algebra, including the solution of system
of linear equations, analysis of linear transformation, and more.

Algorithm

Step1: Define the matrix A;
Step2: Compute the determinant using the command det(A);
Step3: Output the determinant using the command disp.

Program

clc

clear

% Step 1: Define the matrix A

A = [2, 3, 1; 4, 1, 2; 3, 2, 5];

% Step 2: Compute the determinant of A

det_A = det(A);

% Step 3: Output the determinant

disp(‘Determinant of matrix A:’);

disp(det_A);

Output

Determinant of matrix A:

-29
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Conclusion

The program correctly computes the determinant of the given matrix.

Practical No. 20

Aim

To write a program to find the inverse of the given matrix.

Problem

Write a program to compute the inverse of a matrix

A =

1 2 3
0 1 4
5 6 0

 .

Theory

The inverse of a matrix A is another matrix A−1 such that

AA−1 = A−1A = I

where, I is the identity matrix. Not all matrices have an inverse, a matrix must be square
and have a non-zero determinant.

Algorithm

Step1: Define the matrix A;
Step2: Compute the inverse of A using the command inv(A);
Step3: Output the inverse using the command disp.
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Program

clc

clear

% Step 1: Define the matrix

A = [1, 2, 3; 0, 1, 4; 5, 6, 0];

% Step 2: Compute the inverse

inv_A = inv(A);

% Step 3: Output the inverse

disp(‘Inverse of matrix A:’);

disp(inv_A);

Output

Inverse of matrix A:

-24 18 5

20 -15 -4

-5 4 1

Conclusion

The program correctly computes the inverse of the given matrix.

Practical No. 21

Aim

To write a program to find the rank of a given matrix.

Problem

Write a program to compute the rank of the matrix

A =

1 2 3
4 5 6
7 8 9

 .
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Theory

The rank of a matrix is the dimension of the vector space generated by its rows or columns.
It can be computed using the command rank.

Algorithm

Step1: Define the matrix A;
Step2: Compute the rank using the command rank;

Step3: Output the rank using the command disp.

Program

clc

clear

% Step 1: Define the matrix

A = [1, 2, 3; 4, 5, 6; 7, 8, 9];

% Step 2: Compute the rank

rank_A = rank(A);

% Step 3: Output the rank

disp(‘Rank of matrix A:’);

disp(rank_A);

Output

Rank of matrix A:

2

Conclusion

The program correctly computes the rank of the given matrix.

Practical No. 22

Aim

To write a program to find the eigenvalues and eigenvectors of a given matrix.
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Problem

Write a program to compute the eigenvalues and eigenvectors of matrix

A =

(
4 −2
1 1

)
.

Theory

Eigenvector of a square matrix A is a non-zero vector v for any scalar λ such that :

Av = λv

where, λ is the eigenvalue corresponding to the eigenvector v.

Algorithm

Step1: Define the matrix A;
Step2: Compute the eigenvectors and eigenvalues using the command eig(A);
Step3: Output the eigenvalues and eigenvectors using command disp.

Program

clc

clear

% Step 1: Define the matrix A

A = [4, -2; 1, 1];

% Step 2: Compute eigenvalues and eigenvectors of A

[eigenvectors, eigenvalues] = eig(A);

% Step 3: Output the eigenvalues and eigenvectors

disp(‘Eigenvalues:’);

disp(diag(eigenvalues));

disp(‘Eigenvectors:’);

disp(eigenvectors);

Output

Eigenvalues:
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3

2

Eigenvectors:

0.8944 0.7071

0.4472 -0.7071

Conclusion

The program correctly computes the eigenvalues and eigenvectors of the given matrix.

Practical No. 23

Aim

To write a program to calculate the matrix multiplication.

Problem

Write a MATLAB program to verify the given matrices are compatible for multiplication.
If these are compatible then find their multiplication

A =

(
1 2
3 4

)
and B =

(
2 0
1 2

)
.

Theory

Matrix multiplication is a binary operation that produces a matrix from two matrices. If
A is an m× n matrix and B is an n× p matrix, the product AB is an m× p matrix where
each element is computed as:

(AB)ij =
n∑

k=1

AikBkj
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Algorithm

Step1: Define matrices A and B;
Step2: Verify the dimensions of both matrices multiplication using command size(A);
Step3: Compute the product matrix C = AB;
Step4: Output the result using the command disp.

Program

clc

clear

% Step 1: Define the matrices

A = [1, 2; 3, 4];

B = [2, 0; 1, 2];

% Step 2: Verify dimensions

[m, n] = size(A);

[p, q] = size(B);

if n ~= p

disp(‘Matrices are not compatible for multiplication’);

end

% Step 3: Compute the product

C = A * B;

% Step 4: Output the result

disp(‘Matrix A:’);

disp(A);

disp(‘Matrix B:’);

disp(B);

disp(‘Product Matrix C = AB:’);

disp(C);

Output

Matrix A:

1 2

3 4

Matrix B:

2 0

1 2

Product Matrix C = AB:

4 4
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10 8

Conclusion

The program correctly performs matrix multiplication and outputs the resulting matrix.

Practical No. 24

Aim

To determine the consistency and solve a system of linear equations using rank method.

Problem

Write a program to determine the consistency and solve the system of linear equations
given by

x+ 2y + z = 10,

2x+ 4y + 2z = 20,

x+ y + z = 10.

Theory

The rank of a matrix is the maximum number of linearly independent row or column vectors
in the matrix. For a system of linear equations Ax = b, the system is consistent if and only
if the rank of the matrix A is equal to the rank of the augmented matrix [A|b]. Also, if the
rank is equal to the number of variables, the system has a unique solution. If the rank is
less than the number of variables, the system has infinitely many solutions.

Algorithm

Step1: Define the coefficient matrix A and the right-hand side vector b;
Step2: Calculate the rank of A and the rank of the augmented matrix [A|b];
Step3: Compare the ranks to determine the consistency of the system;
Step4: If the system is consistent and the ranks are equal to the number of variables, solve
the system for a unique solution;
Step5: If the system is consistent but the ranks are less than the number of variables, find
the general solution;
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Step6: Output the solution(s) using the command disp.

Program

clc

clear

% Step 1: Define the coefficient matrix and right-hand side vector

A = [1, 2, 1; 1, 1, 1; 1, 1, 1];

b = [10; 10; 10];

% Step 2: Calculate the rank of the matrix A

rank_A = rank(A);

% Step 3: Calculate the rank of the augmented matrix [A|b]

rank_Ab = rank([A b]);

% Step 4: Number of variables (columns of A)

num_vars = size(A, 2);

% Step 5: Compare the ranks to determine the consistency of the system

if rank_A == rank_Ab

if rank_A == num_vars

disp(‘The system is consistent and has a unique solution.’);

% Solve the system

x = inv(A) * b;

disp(‘Solution:’);

disp(x);

else

% Step 6: Find the augmented matrix and its row reduced echelon form

Ab = [A b];

A_r = rref(Ab);

% Logical index for rows where all entries are zero

idx = all(A_r == 0, 2);

% Remove rows with all zeros

A_clean = A_r(~idx, 1:end-1);

b = A_r(~idx, end);

% Particular solution

x_p = linsolve(A_clean, b);

% Find the null space (general solution)

N = null(A, ‘r’);

x_general = x_p + N;

disp(‘The system is consistent and has infinitely many solutions.’);
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% Find the linear combination of the vectors in N

c = sym(‘c’, [size(N, 2) 1]);

L = zeros(size(x_p));

for i = 1:size(N, 2)

L = L + c(i) * N(:, i);

end

% General solutions of the system

general_solutions = x_p + L;

disp(‘The general solutions of the system is:’);

disp(general_solutions);

end

else

disp(‘The system is inconsistent and has no solution.’);

end

Output

The system is consistent and has infinitely many solutions.

The general solutions of the system is:

10 - c1

0

c1

Here, the c1 and c2 are arbitrary coefficients.

Conclusion

The program correctly determines the consistency of the system and provides the solution.
If the system is consistent and the ranks are equal to the number of variables, it finds
the unique solution. If the system is consistent but the ranks are less than the number of
variables, it provides the general solution. If the system is inconsistent, it indicates that
there is no solution.

Practical No. 25

Aim

To write a MATLAB program to solve a homogeneous system of linear equations using
inbuilt commands.
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Problem

Write a program to solve a homogeneous system of linear equations, AX = 0, given by

x+ 2y + 3z = 0,

4x+ 5y + 6z = 0,

7x+ 8y + 9z = 0.

Theory

A homogeneous system of linear equations is of the form AX = 0, where A is a matrix of
coefficients and X is the vector of unknowns. The solution to this system can be found by
determining the null space of A.

Algorithm

Step1: Define the coefficient matrix A;
Step2: Calculate the rank of A using command rank(A);
Step3: Find the number of variables by finding the number of columns in A;
Step4: Check whether system has trivial solution or infinite solutions;
Step5: Output the solution using the command disp.

Program

clc

clear

% Step 1: Example matrix with a unique solution

A = [1, 2, 3; 4, 5, 6; 7, 8, 9];

% Step 2: Calculate the rank of the matrix A

matrix_rank = rank(A);

% Step 3: Number of variables (columns of A)

num_vars = size(A, 2);

% Step 4:

if matrix_rank == num_vars

disp(‘The system has a unique (trivial) solution’);

else

disp(‘The system has infinitely many solutions.’);

% Find the null space (general solution)
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N = null(A, ‘r’);

% Step 6

%%% to find the linear combination of the vectors in N

c = sym(‘c’, [size(N, 2) 1]);

L=zeros(size(1));

for i=1:size(N, 2)

L = L+c(i)*N(:, i);

end

% To find the general solutions of the system

general_solutions=L;

disp(‘The general solutions of the system is:’)

disp(general_solutions)

end

Output

The system has infinitely many solutions.

The general solutions of the system is:

c1

-2*c1

c1

Conclusion

The program correctly solves the homogeneous system of linear equations using the built-in
symbolic command null and outputs the solution vector in symbolic form.

Practical No. 26

Aim

To write a program to check if a matrix is symmetric, skew-symmetric, hermitian, or skew-
hermitian.

Problem

Write a program to determine if a given square matrix is symmetric, skew-symmetric,
hermitian, or skew-hermitian. The program should output the type of the matrix.
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Theory

• A matrix A is symmetric if A = AT .

• A matrix A is skew-symmetric if A = −AT .

• A matrix A is Hermitian if A = AH , where AH is the conjugate transpose of A.

• A matrix A is skew-Hermitian if A = −AH , where AH is the conjugate transpose of
A.

Algorithm

Step1: Define the matrix A;
Step2: Compute the transpose AT and the conjugate of transpose as AH ;
Step3: Check the conditions for symmetry, skew-symmetry, Hermitian, and skew-
Hermitian;
Step4: Output the result using the command disp.

Program

clc

clear

% Step 1: Define the matrix

A = [1, 2+1i, 3; 2-1i, 5, 6; 3, 6, 9];

% Step 2: Compute the transpose and conjugate transpose

AT = A.’; % command for transpose

AH = A’; % command for transpose and conjugate

% Step 3: Check the conditions

is_symmetric = isequal(A, AT);

is_skew_symmetric = isequal(A, -AT);

is_Hermitian = isequal(A, AH);

is_skew_Hermitian = isequal(A, -AH);

% Step 4: Output the result

if is_symmetric

disp(‘The matrix is symmetric.’);

elseif is_skew_symmetric

disp(‘The matrix is skew-symmetric.’);

elseif is_Hermitian

disp(‘The matrix is Hermitian.’);

elseif is_skew_Hermitian
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disp(‘The matrix is skew-Hermitian.’);

else

disp(‘The matrix does not fall into any of the specified categories.’);

end

Output

The matrix is Hermitian.

Conclusion

The program correctly checks if the given matrix is symmetric, skew-symmetric, Hermitian,
or skew-Hermitian, and outputs the correct results.

Practical No. 27

Aim

To write a program to find the characteristic polynomial of a given matrix using symbolic
form.

Problem

Write a program to compute the characteristic polynomial of the matrix

A =

1 2 3
0 −1 2
0 0 3

 .

Theory

The characteristic polynomial of a matrix A is a polynomial which is invariant under matrix
similarity and has the eigenvalues of the matrix as roots. It is defined as

p(λ) = det(A− λI)

where, λ is a scalar and I is the identity matrix of the same dimension of A.
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Algorithm

Step 1: Define the matrix A;
Step2: Create a symbolic variable x;
Step3: Find the characteristic polynomial coefficients using the command poly;
Step4: Create the characteristic polynomial as a symbolic expression using the command
poly2sym;
Step5: Output the characteristic polynomial using the command disp.

Program

clc

clear

% Step 1: Define the matrix

A = [1, 2, 3; 0, -1, 2; 0, 0, 3];

% Step 2: Create a symbolic variable

syms x;

% Step 3: Find the characteristic polynomial coefficients

char_poly_coeffs = poly(A);

% Step 4: Create the characteristic polynomial as a symbolic expression

char_poly = poly2sym(char_poly_coeffs, x);

% Step 5: Output the characteristic polynomial

disp(‘Characteristic polynomial:’);

disp(char_poly);

Output

Characteristic polynomial:

x^3 - 3*x^2 - x + 3

Conclusion

The program correctly computes the characteristic polynomial of the given matrix in sym-
bolic form.

Practical No. 28

59



Algebra and Trigonometry Practical No. 28

Aim

To write a program to find the roots of a given polynomial.

Problem

Write a program to compute the roots of the polynomial

p(x) = x3 − 3x2 − x+ 3.

Theory

The roots of a polynomial p(x) are the values of x for which p(x) = 0. These roots can
be found using various numerical and analytical methods. In MATLAB, the roots of a
polynomial can be computed using the roots function.

Algorithm

Step1: Define the coefficient vector of polynomial p(x);
Step2: Find the roots using the command roots;
Step3: Output the roots using the command disp.

Program

clc

clear

% Step 1: Define the polynomial

p = [1, -3, -1, 3];

% Step 2: Find the roots of the polynomial

roots_p = roots(p);

% Step 3: Output the roots

disp(‘Roots of the polynomial:’);

disp(roots_p);

Output

Roots of the polynomial:

3.0000
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-1.0000

1.0000

Conclusion

The program correctly computes the roots of the given polynomial.

Practical No. 29

Aim

To write a program to find a polynomial from its given roots.

Problem

Write a program to compute the polynomial whose roots are 1, 2, 3.

Theory

A polynomial can be uniquely determined by its roots. The poly function in MATLAB
generates the coefficients of a polynomial from its roots. This polynomial can then be
expressed as a symbolic expression for better readability in MATLAB.

Algorithm

Step1: Define the roots of the polynomial;
Step2: Compute the polynomial from its roots using the command poly;
Step3: Output the polynomial coefficients using the command disp;
Step4: Create the polynomial as a symbolic expression for better readability using the
command poly2sym;
Step5: Output the symbolic polynomial using the command disp.

Program

clc

clear

% Step 1: Define the roots of the polynomial

roots_p = [1 2 3];
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% Step 2: Create the polynomial from its roots

p = poly(roots_p);

% Step 3: Display the polynomial coefficients

disp(‘Polynomial coefficients:’);

disp(p);

% Step 4: Create the polynomial as a symbolic expression

syms x;

poly_expr = poly2sym(p, x);

% Step 5: Output the symbolic polynomial

disp(‘Polynomial:’);

disp(poly_expr);

Output:

Polynomial coefficients:

1 -6 11 -6

Polynomial:

x^3 - 6*x^2 + 11*x - 6

Conclusion:

The program successfully computes the polynomial from the given roots and displays it both
as coefficients and as a symbolic expression by demonstrating the process of polynomial
reconstruction from its roots.

Practical No. 30

Aim

To write a program to define and plot functions in MATLAB.

Problem

Write a program to define the function f(x) = x2 + sin(x) and plot it over the interval
[−10, 10].
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Theory

In MATLAB, functions can be defined using the anonymous functions, and the fplot

function can be used to plot the function over a specified interval.

Algorithm

Step1: Define the function f(x) using an anonymous function;
Step2: Plot the function using the fplot command;
Step3: Label the x-axis using the xlabel command;
Step4: Label the y-axis using the ylabel command;
Step5: Title the plot using the title command.

Program

clc

clear

% Step 1: Define the function

syms x

f = x^2 + sin(x);

% Step 2: Plot the function

fplot(f, [-10, 10]);

% Step 3: Label the x-axis

xlabel(‘x’);

% Step 4: Label the y-axis

ylabel(‘f(x)’);

% Step 5: Title the plot

title(‘Plot of the function f(x) = x^2 + sin(x)’);

Conclusion:

The program successfully defines and plots the function f(x) = x2 + sin(x) over the in-
terval [−10, 10]. This demonstrates the use of fplot function in MATLAB for visualizing
mathematical functions.

Practical No. 31
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Aim

To write a program to classify the type of discontinuity of a function at a given point.

Problem

Write a program to determine and classify the type of discontinuity of the function f(x) = 1
x

at the point x = 0.

Theory

Discontinuities in functions can be classified into different types:

• Removable Discontinuity: If the left-hand limit and right-hand limit at a point
are equal but not equal to the function value at that point.

• Infinite Discontinuity: If the function approaches infinity from one or both sides
of the point.

• Jump Discontinuity: If the left-hand limit and right-hand limit at a point are not
equal.

In MATLAB, the limit function can be used to compute the left-hand and right-hand
limits.

Algorithm:

Step1: Define the function f(x) using an anonymous function;
Step2: Specify the point of interest c;
Step3: Compute the left-hand limit at c using the command limit;
Step4: Compute the right-hand limit at c using the command limit;
Step5: Compute the function value at c;
Step6: Classify the type of discontinuity based on the computed limits and function value;
Step7: Output the result using the command disp.

Program

clc

clear

% Step 1: Define the function

f = @(x) 1 / x;
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% Step 2: Specify the point of interest

c = 1;

% Step 3: Compute the left-hand limit

syms x;

limit_left = limit(f(x), x, c, ‘left’);

% Step 4: Compute the right-hand limit

limit_right = limit(f(x), x, c, ‘right’);

% Step 5: Compute the function value at c

f_c = f(c);

% Step 6: Classify the type of discontinuity

if limit_left == limit_right && limit_left == f_c

disp([‘Function is continuous at x = ’, num2str(c)]);

elseif limit_left == limit_right

disp([‘Function has a removable discontinuity at x = ’, num2str(c)]);

elseif isinf(limit_left) || isinf(limit_right)

disp([‘Function has an infinite discontinuity at x = ’, num2str(c)]);

else

disp([‘Function has a jump discontinuity at x = ’, num2str(c)]);

end

Output

Function has an infinite discontinuity at x = 0

Conclusion:

The program correctly classifies the type of discontinuity of the function f(x) = 1
x
at the

point x = 0 as an infinite discontinuity. This demonstrates the use of symbolic computation
in MATLAB for analyzing and classifying discontinuities in functions.
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Practical No. 32

Aim

To write a program to check the differentiability of a function at a given point.

Problem

Write a program to determine and check the differentiability of the function

f(x) =
1

x

at the point x = 1.

Theory

A function f(x) is differentiable at a point c if the left-hand derivative and right-hand
derivative at c are equal. The derivative of f(x) at c can be computed using symbolic
differentiation in MATLAB.

Algorithm:

Step1: Define the function f(x) using an anonymous function;
Step2: Specify the point of interest c;
Step3: Compute the left-hand derivative at c using the diff function;
Step4: Compute the right-hand derivative at c using the diff function;
Step5: Check if the left-hand and right-hand derivatives are equal;
Step6: Output the result using the command disp.

Program

clc

clear

% Step 1: Define the function

f = @(x) 1 / x;

% Step 2: Specify the point of interest

c = 1;

% Step 3: Compute the left-hand derivative
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syms x;

left_derivative = limit((f(x) - f(c)) / (x - c), x, c, ‘left’);

% Step 4: Compute the right-hand derivative

right_derivative = limit((f(x) - f(c)) / (x - c), x, c, ‘right’);

% Step 5: Check if the left-hand and right-hand derivatives are equal

if left_derivative == right_derivative

disp([‘Function is differentiable at x = ’, num2str(c)]);

disp([‘The derivative at x = ’, num2str(c), ‘ is ’, char(left_derivative)]);

else

disp([‘Function is not differentiable at x = ’, num2str(c)]);

end

Output

Function is differentiable at x = 1

The derivative at x = 1 is -1

Conclusion

The program correctly checks the differentiability of the function f(x) = 1
x
at the point

x = 1 and shows that the function is differentiable at that point.

Practical No. 33

Aim

To write a program to compute the symbolic derivative of a differentiable function.

Problem

Write a program to compute the single order and double order derivative of the function

f(x) = x2 + sin(x).
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Theory

The derivative of a function f(x) at a point x = c is defined as the limit

f ′(c) = lim
h→0

f(c+ h)− f(c)

h

If this limit exists, the function is said to be differentiable at that point, and the value of
the limit is the derivative. In MATLAB, the diff function can be used to compute the
derivatives symbolically.

Algorithm

Step1: Define the function f(x);
Step2: Compute the symbolic derivative of f(x) using the command diff(f,x);
Step3: Compute the symbolic double derivative of f(x) using the command diff(f,x,2);
Step4: Output the result using the command disp.

Program

clc

clear

% Step 1: Define the function

syms x;

f = x^2 + sin(x);

% Step 2: Compute the symbolic first order derivative

f_derivative = diff(f, x);

% Step 3: Compute the symbolic second order derivative

f_double_derivative = diff(f, x, 2);

% Step 4: Output the result

disp(‘The derivative of f(x):’);

disp(f_derivative)

disp(‘f_double_derivative of f(x):’);

disp(f_double_derivative)

Output

The derivative of f(x):

2*x + cos(x)
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f_double_derivative of f(x):

2 - sin(x)

Conclusion

The program successfully computes the first and double order derivative of the function
f(x) = x2 + sin(x).

Practical No. 34

Aim

To write a program to find the nth roots of a complex number using De Moivre’s Theorem.

Problem

Write a program to compute the nth root of the complex number

z = 8 + 6i

for n = 3.

Theory

De Moivre’s theorem states that for a complex number z = reiθ, the nth roots are given by

z1/n = r1/n
(
cos

(
θ + 2kπ

n

)
+ i sin

(
θ + 2kπ

n

))
for k = 0, 1, . . . , n − 1. Where, r is the modulus of z and θ is the argument of z. In
MATLAB, we can use the abs and angle functions to compute the modulus and argument
of a complex number, respectively.

Algorithm

Step1: Define the complex number z;
Step2: Compute the modulus r of z using the command abs;
Step3: Compute the argument θ of z using the command angle;

Step4: Compute the nth roots using De Moivre’s Theorem;
Step5: Output the results using the command disp.
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Program

clc

clear

% Step 1: Define the complex number

z = 8 + 6i;

% Step 2: Compute the modulus

r = abs(z);

% Step 3: Compute the argument

theta = angle(z);

% Step 4: Compute the nth roots using De Moivre’s Theorem

n = 3;

roots = zeros(n, 1);

for k = 0:n-1

roots(k+1) = r^(1/n) * (cos((theta + 2*k*pi)/n) +....

i * sin((theta + 2*k*pi)/n));

end

% Step 5: Output the results

disp(‘The 3rd roots of the complex number 8 + 6i are:’);

disp(roots);

Output

The 3rd roots of the complex number 8 + 6i are:

2.1051 + 0.4586i

-1.4497 + 1.5937i

-0.6554 - 2.0523i

Conclusion

The program successfully computes the 3rd roots of the complex number 8 + 6i using De
Moivre’s theorem. This demonstrates the use of complex number operations in MATLAB
to find the roots of complex numbers.

Practical No. 35
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Aim

To write a program to find the Taylor series expansion of a given function about a specified
point.

Problem

Write a program to compute the Taylor series expansion of the function

f(x) = sin(x)

about the point x = 2 up to the 6th order terms.

Theory

The Taylor series expansion of a function f(x) about a point x = a is given by

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f ′′′(a)

3!
(x− a)3 + · · ·

In MATLAB, the taylor function can be used to compute the Taylor series expansion of
a function symbolically.

Algorithm

Step1: Define the function f(x) symbolically;
Step2: Specify the point a at which the Taylor series is to be expanded;
Step3: Compute the Taylor series expansion using the command taylor;
Step4: Output the result using the command disp.

Program

clc

clear

% Ensure the Symbolic Math Toolbox is available

syms x;

% Step 1: Define the function

f = sin(x);

% Step 2: Specify the point of expansion

a = 2;
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% Step 3: Compute the Taylor series expansion

taylor_series = taylor(f, x, ‘ExpansionPoint’, a, ‘Order’, 4);

% Step 4: Output the result

disp(‘The Taylor series expansion is:’);

disp(taylor_series);

Output

The Taylor series expansion is:

sin(2) - (sin(2)*(x - 2)^2)/2 + cos(2)*(x - 2) - (cos(2)*(x - 2)^3)/6

Conclusion

The program successfully computes the Taylor series expansion of the function sin(x) about
the point x = 2 up to the 6th order terms using the symbolic computation in MATLAB.
This demonstrates the use of symbolic computation to find the Taylor series of functions
about any specified point.

Practical No. 36

Aim

To write a program to verify the Rolle’s theorem for a given function on a specified interval.

Problem

Write a program to check if the function

f(x) = x3 − 3x+ 2

satisfies the conditions of Rolle’s theorem on the interval [0, 2].

Theory

Rolle’s theorem states that if a function f is continuous on the closed interval [a, b], differ-
entiable on the open interval (a, b), and f(a) = f(b), then there exists at least one number
c in (a, b) such that f ′(c) = 0.
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Algorithm

Step1: Define the function f(x) symbolically;
Step2: Specify the interval [a, b];
Step3: Check if f(a) = f(b);
Step4: Compute the derivative of f(x);
Step5: Find the roots of the derivative within the interval (a, b);
Step6: Output the result using the command disp.

Program

clc

clear

syms x;

% Step 1: Define the continuous and differentiable function

f = x^3 - 3*x + 2;

% Step 2: Specify the interval

a = 0;

b = sqrt(3);

% Step 3: Check if f(a) = f(b)

fa = subs(f, x, a);

fb = subs(f, x, b);

if fa == fb

% Step 4: Compute the derivative

f_prime = diff(f, x);

% Step 5: Find the roots of the derivative within the interval

critical_points = solve(f_prime == 0, x);

critical_points = double(critical_points);

c = critical_points(critical_points > a & critical_points < b);

% Step 6: Output the result

if ~isempty(c)

disp(‘Rolle’s Theorem is satisfied.’);

disp([‘There exists at least one c in interval such that f’(c) = 0.’]);

disp([‘The value of c is: ’, num2str(c’)]);

end

else

disp(‘Rolle’’s Theorem is not applicable since f(a) does not equal f(b).’);

end
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Output

Rolle’s Theorem is satisfied.

There exists at least one number c in (0, 1.7321) such that f’(c) = 0.

The value of c is: 1

Conclusion

The program successfully verifies Rolle’s Theorem for the function x3−3x+2 on the interval
[0, 2]which demonstrates that there exists at least one point c in (0, 2) where the derivative
of the function is zero.

Practical No. 37

Aim

To write a program to verify Bolzano’s Intermediate Value theorem for a given function.

Problem

Write a program to verify Bolzano’s Intermediate Value theorem for the function f(x) =
x3 − 6x2 + 11x− 6 on the interval [1.5, 2.5]. Also, check if there is a root in this interval.

Theory

Bolzano’s Intermediate Value theorem states that if f(x) is a continuous function on the
interval [a, b] and f(a) and f(b) have opposite signs, then there exists at least one c ∈ (a, b)
such that f(c) = 0. This theorem is used to prove the existence of roots of a continuous
functions within a given interval.

Algorithm

Step1: Define the function f(x);
Step2: Define the interval [a, b];
Step3: Check the signs of f(a) and f(b);
Step4: If f(a) and f(b) have opposite signs, conclude that there exist atleast one root in
[a, b];
Step5: Use a root-finding inbuilt function (e.g., fzero) to find a root in the interval;
Step6: Output the result using the command disp.
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Program

clc

clear

% Step 1: Define the function

f = @(x) x^3 - 6*x^2 + 11*x - 6;

% Step 2: Define the interval [a, b]

a = 1.5;

b = 2.5;

% Step 3: Check the signs of f(a) and f(b)

fa = f(a);

fb = f(b);

% Step 4: Check if f(a) and f(b) have opposite signs

if fa * fb < 0

disp(‘There exists at least one root in the given interval by Bolzano IVT.’);

% Step 5: Use fzero function to find a root in the interval

root = fzero(f, [a, b]);

root=round(root, 6);

disp(‘Root found(approximated):’);

disp(root);

else

disp(‘BolzanoIVT does not guarantee a root in the given interval.’);

end

Output

There is at least one root in the given interval by Bolzano’s IVT.

Root found:

2

Conclusion

The program correctly verifies Bolzano’s Intermediate Value theorem and finds a root within
the given interval. The theorem confirms the existence of at least one root in the interval
[1.5, 2.5] for the given function.

Practical No. 38
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Aim

To write a program to verify Lagrange’s Mean Value theorem for a given function.

Problem

Write a program to verify Lagrange’s Mean Value theorem for the function f(x) = x3−3x+1

on the interval [0, 2]. Also, check if there exists a point c ∈ (0, 2) such that f ′(c) = f(b)−f(a)
b−a

.

Theory

Lagrange’s Mean Value theorem states that if a function f is continuous on the closed
interval [a, b] and differentiable on the open interval (a, b), then there exists at least one
c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

This theorem provides a formalized version of the intuitive idea that a continuous and dif-
ferentiable curve will have at least one tangent that is parallel to the secant line connecting
the endpoints.

Algorithm

Step1: Define the function f(x) and calculate the derivative f ′(x);
Step2: Define the interval [a, b];

Step3: Calculate the slope of the secant line f(b)−f(a)
b−a

;

Step4: Define the target function g(c) = f ′(c)− f(b)−f(a)
b−a

;
Step5: Use a root-finding inbuilt function (e.g., fzero) to find a root of the g(c) in the
interval (a, b);
Step6: Output the result using the command disp.

Program

clc

clear

syms x

% Step 1: Define a continuous function on [a,b] and differentiable function on (a,b)

f = @(x) x^3 - 3*x + 1;

df = diff(sym(f),x); % we used sym to change f in symbolic

df= matlabFunction(df); % We used matlabFunction to change in matlab handles

% Step 2: Define the interval [a, b]
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a = 0;

b = 2;

% Step 3: Calculate the slope of the secant line

slope_secant = (f(b) - f(a)) / (b - a);

% Step 4: Define the target function g(c)

g = @(c) df(c) - slope_secant;

% Step 5: Use fzero to find a root of g(c) in the interval (a, b)

c = fzero(g, [a, b]);

% Step 6: Output the result

if ~isempty(c)

disp(‘There exists a point c in the given interval such that f’(c) satisfies

LMVT.’);

disp(‘Point c found:’);

disp(c);

end

Output

There exists a point c in the given interval such that f’(c) satisfies LMVT.

Point c found:

1.1547

Conclusion

The program correctly verifies Lagrange’s Mean Value theorem and finds a point within the
given interval that satisfies the theorem. The theorem confirms that there exists at least
one point c ∈ (0, 2) for the given function.

Practical No. 39

Aim

To write a program to determine the maximum number of positive and negative roots of a
polynomial using Descartes’ rule of sign.

Problem

Write a code to find the maximum number of positive and negative roots of polynomial

P (x) = x3 − 6x2 + 11x− 6.
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Theory

Descartes’ rule of signs states that:

1. The number of positive real roots of a polynomial is either equal to the number of sign
changes between consecutive nonzero coefficients or less than it by an even number.

2. The number of negative real roots of a polynomial is either equal to the number of
sign changes between consecutive nonzero coefficients after substituting x with −x or
less than it by an even number.

Algorithm

Step1: Define the coefficient list of polynomial P (x) and P (−x);
Step2: Remove zero coefficients from the polynomial;
Step3: Compute the maximum number of positive roots;
Step4: Compute the maximum number of negative roots;
Step5: Display the results.

Program

clc

clear

% Step 1: Define the polynomial coefficients for P(x) and P(-x)

% Example polynomial: P(x) = x^3 - 6x^2 + 11x - 6 (roots are 1, 2, 3)

coeffs = [1, -6, 11, -6];

neg_coeffs = coeffs .* (-1).^(length(coeffs)-1:-1:0);

% Step 2: Remove zero coefficients

coeffs = coeffs(coeffs ~= 0);

neg_coeffs = neg_coeffs(neg_coeffs ~= 0);

% Step 3: Compute the number of sign changes for positive roots

number = 0;

for i = 1:length(coeffs)-1

if sign(coeffs(i)) ~= sign(coeffs(i+1))

number = number + 1;

end

end

max_positive_roots = number;

% Step 4: Compute the number of sign changes for negative roots

number1 = 0;

for i = 1:length(neg_coeffs)-1
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if sign(neg_coeffs(i)) ~= sign(neg_coeffs(i+1))

number1 = number1 + 1;

end

end

max_negative_roots = number1;

% Step 5: Display the results

disp([‘Maximum number of positive roots: ’, num2str(max_positive_roots)]);

disp([‘Maximum number of negative roots: ’, num2str(max_negative_roots)]);

Output

Maximum number of positive roots: 3

Maximum number of negative roots: 0

Conclusion

The program successfully determines the maximum number of positive and negative roots
of a polynomial using Descartes’ rule of signs.

Practical No. 40

Aim

To write a program to find the radius of convergence of a given power series using the ratio
test.

Problem

Write a code to find the radius of convergence of the power series
∑∞

n=0
xn

n!
.

Theory

The radius of convergence of a power series
∑
anx

n is found using the ratio test, which is
defined as: if

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L, then,

the radius of convergence R is given by:

R =
1

L
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Algorithm

Step1: Define the coefficients of the power series;
Step2: Compute the limit of the ratio of successive coefficients;
Step3: Calculate the radius of convergence;
Step4: Display the result.

Program

clc

clear

% Step 1: Define the coefficients of the power series

% Example: Coefficients for the series sum(a_n * x^n) where a_n = 1/n!

coeffs = @(n) 1 ./ factorial(n);

% Step 2: Compute the limit of the ratio of successive coefficients

syms n;

ratio = abs(coeffs(n+1) / coeffs(n));

L = limit(ratio, n, Inf);

% Step 3: Calculate the radius of convergence

R = 1 / L;

% Step 4: Display the result

disp(‘Radius of convergence:’);

disp(R);

Output

Radius of convergence:

Inf

Conclusion

The program correctly computes the radius of convergence of the given power series using
the ratio test.

Practical No. 41
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Aim

To write a program to determine the convergence of a given sequence using the limit.

Problem

Write a code to check whether the sequence

an = 1/n

is convergent or not.

Theory

A sequence {an} converges to a limit L if for every ϵ > 0, there exists a positive integer N
such that for all n > N , |an − L| < ϵ. In MATLAB, this can be checked by computing the
limit of the sequence as n approaches to infinity.

Algorithm

Step1: Define the sequence;
Step2: Compute the limit of the sequence as n approaches to infinity;
Step3: Check if the limit exists;
Ste 4: Display the result.
Program:

clc

clear

% Step 1: Define the sequence

% Example: Sequence a_n = 1/n

syms n;

sequence = 1 / n;

% Step 2: Compute the limit of the sequence as n approaches infinity

L = limit(sequence, n, Inf);

% Step 3: Check if the limit exists

if isfinite(L)

result = ‘The sequence is convergent.’;

else

result = ‘The sequence is divergent.’;

end
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% Step 4: Display the result

disp(‘Limit of the sequence:’);

disp(L);

disp(result);

Output

Limit of the sequence:

0

The sequence is convergent.

Conclusion

The program correctly determines the limit of the given sequence and checks whether the
sequence is convergent or divergent. In this example, the sequence {1/n} converges to 0 as
n approaches to infinity.

Practical No. 42

Aim

To write a program to determine the convergence or divergence of a given series.

Problem

Write a program to check whether the given series is convergent or divergent. Also, find
the sum of the series if it is convergent.

Theory

A series
∑∞

n=1 an converges if the sequence of partial sums SN =
∑N

n=1 an converges as N
approaches infinity. In MATLAB, this can be checked by computing the limit of the partial
sums.

Algorithm

Step1: Define the series;
Step2: Compute the sum of the series;
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Step3: Check if the sum exists;
Step4: Display the result.

Program

clc

clear

% Step 1: Define the series

% Example: Series a_n = 1/n^2

syms n;

series = 1 / n^2;

% Step 2: Compute the partial sum of the series

sum = symsum(series, n, 1, Inf);

% Step 3 and 4: Check if the sum exists

if isfinite(sum)

disp(‘Sum of the series is:’);

disp(sum);

else

disp(‘The series is divergent.’);

end

Output

Sum of the series is:

pi^2/6

Conclusion

The program correctly determines the sum of the series and checks whether the series is
convergent or divergent. In this example, the series

∑∞
n=1

1
n2 converges to π2

6
, indicating

that the series is convergent.

Practical No. 43
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Aim

To calculate the definite integral of a given function over a specified interval.

Problem

Calculate the integral of the function f(x) = x2 over the interval [0, 1].

Theory

The definite integral of a function f(x) over an interval [a, b] is given by∫ b

a

f(x) dx

Algorithm

Step1: Define the function f(x);
Step2: Specify the limits of integration [a, b];
Step3: Calculate the integral using the appropriate numerical method or symbolic inte-
gration.

Program

clc

clear

% Step 1: Define the function

f = @(x) x.^2;

% Step 2: Specify the limits of integration

a = 0;

b = 1;

% Step 3: Calculate the integral

integral_value = integral(f, a, b);

% Step 4: Display the result

disp([‘Value of the integral of f(x) = x^2 from ’, num2str(a), ‘to’,

num2str(b),‘:’]);

disp(integral_value);
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Output

Value of the integral of f(x) = x^2 from 0 to 1:

0.3333

Conclusion

The program correctly calculates the definite integral of the function f(x) = x2 over the
interval [0, 1], providing the numerical value of approximately 0.3333.
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Chapter 2

Single and Multi Variate Calculus

Practical No. 1

Aim

To write a program to evaluate the limit of multivariable function using MATLAB.

Problem

Determine whether the following limit exist? :

lim
(x,y)→(0,0)

x2 − y2

x2 + y2
.

Theory

The limit of a multivariable function as (x, y) → (0, 0) exists if the function approaches the
same value along any path leading to the point (0, 0). In this case, we will evaluate the

limit of the function x2−y2

x2+y2
along several paths and see if the limit is the same along each

path. To check the limit, we will consider:
1. The path along the x-axis (y = 0).
2. The path along the y-axis (x = 0).
3. The path along y = x (the line y = x).

Algorithm

Step 1: Define the function f(x, y) = x2−y2

x2+y2
;

Step 2: Evaluate the limit along the x-axis (y = 0);
Step 3: Evaluate the limit along the y-axis (x = 0);
Step 4: Evaluate the limit along the path y = x;
Step 5: Compare the results of the different paths to determine if the limit exists.
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MATLAB Program

% Define symbolic variables

syms x y;

% Define the function f(x, y)

f = (x^2 - y^2) / (x^2 + y^2);

% Evaluate the limit along the x-axis (y = 0)

limit_x_axis = limit(f, y, 0);

% Evaluate the limit along the y-axis (x = 0)

limit_y_axis = limit(f, x, 0);

% Evaluate the limit along the path y = x

limit_line_y_equals_x = limit(f, y, x);

% Display the results

disp([‘Limit along the x-axis: ’, num2str(limit_x_axis)]);

disp([‘Limit along the y-axis: ’, num2str(limit_y_axis)]);

disp([‘Limit along the path y = x: ’, num2str(limit_line_y_equals_x)]);

Output

Limit along the x-axis: 1

Limit along the y-axis: -1

Limit along the path y = x: 0

General Matlab code for finding limit of any function

% Step 1: Define variables x and y

syms x y;

% Step 2: Request the user to input the function f(x, y)

f_input = input(‘Enter the function f(x, y): ’, ’s’);

f = str2func([‘@(x, y) ’ f_input]); % Convert to an anonymous function

% Step 3: Request the user to input the limit point (a, b)

a = input(‘Enter the limit point for x (a): ’);

b = input(‘Enter the limit point for y (b): ’);

% Step 4: limit calculations along different paths

try

% Define the function f(x, y)
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f_sym = str2sym(f_input);

% Substitute different paths into the function

f_path1 = subs(f_sym, y, x); % Path 1: y = x

f_path2 = subs(f_sym, y, -x); % Path 2: y = -x

f_path3 = subs(f_sym, y, b); % Path 3: y = b (constant y)

% Calculate limits along these paths

limit_path1 = limit(f_path1, x, a); % Limit as x -> a along y = x

limit_path2 = limit(f_path2, x, a); % Limit as x -> a along y = -x

limit_path3 = limit(f_path3, x, a); % Limit as x -> a along y = b

% Display the results of limits

fprintf(‘Limit along y = x: %s\n’, char(limit_path1));

fprintf(‘Limit along y = -x: %s\n’, char(limit_path2));

fprintf(‘Limit along y = %f: %s\n’, b, char(limit_path3));

catch

% Handle any errors in limit calculation

warning(‘Error with symbolic limit calculation. Proceeding with numerical

evaluation.’);

end

% Step 5: Numerical evaluation and handling of undefined values

% Define a grid around the limit point for numerical evaluation

grid_range = linspace(a - 1, a + 1, 100); % Define a small range around the point

(a, b)

[x_grid, y_grid] = meshgrid(grid_range, grid_range);

% Safe numerical evaluation of the function, with small epsilon to avoid division by

zero epsilon = 1e-6;

try

f_values = f(x_grid, y_grid); % Evaluate the function on the grid

catch

warning(‘Numerical evaluation encountered issues, attempting to

handle undefined values.’);

f_values = NaN(size(x_grid)); % Set as NaN if there is an evaluation error

end

% Avoid division by zero or undefined values (replace Inf and NaN)

f_values(isinf(f_values) | isnan(f_values)) = NaN;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Step 6: Plotting the surface plot
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figure;

surf(x_grid, y_grid, f_values, ’EdgeColor’, ’none’); % 3D surface plot

title([‘Surface Plot of f(x, y) near (’ num2str(a) ’, ’ num2str(b) ’)’]);

xlabel(‘x’);

ylabel(‘y’);

zlabel(‘f(x, y)’);

colorbar;

shading interp;

% Step 7: Plotting the contour plot

figure;

contourf(x_grid, y_grid, f_values, 20); % 20 contour levels for detail

title([‘Contour Plot of f(x, y) near (’ num2str(a) ’, ’ num2str(b) ’)’]);

xlabel(‘x’);

ylabel(‘y’);

colorbar;

Conclusion

The limit of the function x2−y2

x2+y2
as (x, y) → (0, 0) does not exist because the limit differs

along different paths. Specifically, the limit is 1 along the x-axis, -1 along the y-axis, and
0 along the path y = x.

Exercise Problem

Determine whether the following limit exist?

lim
(x,y)→(0,0)

x3 − y3

x3 + y3
.

Practical No. 2

Aim

To write a program to evaluate the continuity of multivariable function using MATLAB.

Problem

Check the continuity of the function

f(x, y) = sin(x) + cos(y).
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Theory

A function f(x, y) is said to be continuous at a point (x0, y0) if the following conditions are
satisfied:
1. The function f(x, y) is defined at (x0, y0).
2. The limit of the function exists at (x0, y0).
3. The value of the function at (x0, y0) is equal to the limit of the function as (x, y)
approaches (x0, y0).

Algorithm

Step 1: Define the function f(x, y) = sin(x) + cos(y);
Step 2: Evaluate the function at an arbitrary point (x0, y0);
Step 3: Evaluate the limit of f(x, y) as (x, y) approaches (x0, y0);
Step 4: Check if the function value at (x0, y0) matches the limit, confirming continuity.

MATLAB Program

% Define symbolic variables

syms x y;

% Define the function f(x, y)

f = sin(x) + cos(y);

% Check the continuity by evaluating the function at an arbitrary point (e.g.,(0, 0))

f_val = subs(f, {x, y}, {0, 0});

% Display the function value at the point (0, 0)

disp([‘f(0, 0) = ’, num2str(f_val)]);

Output

f(0, 0) = 1

General Matlab code for finding continuity of any func-

tion

% Step 1: Define the function

user_func = input(‘Enter the function f(x, y) in terms of x and y as a string: ’,

’s’);

f = str2func([‘@(x, y) ’, user_func]); % Convert string to function handle
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% Step 2: Input the point of interest (a, b)

a = input(‘Enter the value of x (a): ’);

b = input(‘Enter the value of y (b): ’);

% Step 3: Evaluate function value at (a, b), checking for division by zero

try

f_value = f(a, b);

fprintf(‘f(%f, %f) = %f\n’, a, b, f_value);

catch

fprintf(‘The function f(x, y) is undefined at (%f, %f) due to division by zero.

\n’, a, b);

f_value = NaN; % Mark as undefined

end

% Step 4: Evaluate the limit along the x-axis (y = b), checking for division by zero

try

x_axis_limit = f(a, b); % Limit when y = b (same as evaluating f(a, b))

fprintf(‘Limit along the x-axis (f(%f, %f)) = %f\n’, a, b, x_axis_limit);

catch

fprintf(‘The limit along the x-axis is undefined at (%f, %f) due to division by

zero.\n’, a, b);

x_axis_limit = NaN; % Mark as undefined

end

% Step 5: Evaluate the limit along the y-axis (x = a), checking for division by zero

try

y_axis_limit = f(a, b); % Limit when x = a (same as evaluating f(a, b))

fprintf(‘Limit along the y-axis (f(%f, %f)) = %f\n’, a, b, y_axis_limit);

catch

fprintf(‘The limit along the y-axis is undefined at (%f, %f) due to division by

zero.\n’, a, b);

y_axis_limit = NaN; % Mark as undefined

end

% Step 6: Check continuity only if values are not NaN

if ~isnan(f_value) && f_value == x_axis_limit && f_value == y_axis_limit

fprintf(‘The function f(x,y) is continuous at (%f, %f).\n’, a, b);

else

fprintf(‘The function f(x,y) is not continuous at (%f, %f).\n’, a, b);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Step 7: Graphical Representation

% Create a meshgrid for x and y values

92



Practical No. 3 Single and Multi Variate Calculus

x_vals = linspace(-pi, pi, 100); % x range, can be adjusted

y_vals = linspace(-pi, pi, 100); % y range, can be adjusted

[X, Y] = meshgrid(x_vals, y_vals); % Create grid

% Evaluate the function on the grid with error handling

Z = NaN(size(X)); % Initialize Z with NaN values for undefined points

for i = 1:numel(X)

try

Z(i) = f(X(i), Y(i));

catch

Z(i) = NaN; % Keep NaN where the function is undefined

end

end

% Create the surface plot, using NaN handling to skip undefined points

figure;

surf(X, Y, Z, ’EdgeColor’, ’none’); % 3D surface plot

xlabel(‘x’); % Label x-axis

ylabel(‘y’); % Label y-axis

zlabel(‘f(x, y)’); % Label z-axis

title(‘Surface plot of user-defined f(x, y) with handling for undefined points’);

% Title

colorbar; % Show color scale

grid on; % Turn on grid

Conclusion

The function f(x, y) = sin(x) + cos(y) is continuous at every point in its domain, as both
sin(x) and cos(y) are continuous functions. Therefore, f(x, y) is continuous everywhere.

Exercise Problem

Check the continuity of the function f(x, y) = ex cos(y).

Practical No. 3

Aim

Write a program to compute the first partial derivatives of the function using MATLAB.
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Problem

Given the function
f(x, y) = x2y + 3xy2,

find the following partial derivatives:

fx(x, y) and fy(x, y).

Theory

To compute the partial derivatives of the function f(x, y) = x2y + 3xy2, we need to apply
the following steps:
1. The first partial derivative with respect to x involves differentiating f(x, y) with respect
to x, treating y as a constant.
2. The first partial derivative with respect to y involves differentiating f(x, y) with respect
to y, treating x as a constant.

Algorithm

Step 1: Define the function f(x, y) = x2y + 3xy2;
Step 2: Compute the partial derivative fx(x, y) with respect to x;
Step 3: Compute the partial derivative fy(x, y) with respect to y;
Step 4: Display the results.

MATLAB Program

% Define the symbolic variables

syms x y;

% Define the function f(x, y)

f = x^2 * y + 3 * x * y^2;

% Compute the partial derivatives with respect to x and y

f_x = diff(f, x);

f_y = diff(f, y);

% Display the results

disp([‘f_x(x, y) = ’, char(f_x)]);

disp([‘f_y(x, y) = ’, char(f_y)]);

Output

f_x(x, y) = 2*x*y + 3*y^2
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f_y(x, y) = x^2 + 6*x*y

Conclusion

The first partial derivatives of the function f(x, y) = x2y + 3xy2 are:

fx(x, y) = 2xy + 3y2

and

fy(x, y) = x2 + 6xy.

Exercise Problem

Given the function f(x, y) = x2+4xy+2y2, find the partial derivatives fx(x, y) and fy(x, y).

Practical No. 4

Aim

Write a program to compute the first partial derivatives using MATLAB.

Problem

Given the function:

f(x, y) = ln(x2 + y2),

find the following partial derivatives at the point (x, y) = (3, 4):

fx(x, y) and fy(x, y).

Theory

To compute the partial derivatives of the function f(x, y) = ln(x2 + y2), we need to apply
the chain rule:
1. The first partial derivative with respect to x involves differentiating ln(x2 + y2) with
respect to x, treating y as constant.
2. The first partial derivative with respect to y involves differentiating ln(x2 + y2) with
respect to y, treating x as constant.
3. After computing the partial derivatives, evaluate them at the point (3, 4).
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Algorithm

Step 1: Define the function f(x, y) = ln(x2 + y2);
Step 2: Compute the partial derivative fx(x, y) with respect to x;
Step 3: Compute the partial derivative fy(x, y) with respect to y;
Step 4: Evaluate both partial derivatives at the point (x, y) = (3, 4);
Step 5: Display the results.

MATLAB Program

% Define the symbolic variables

syms x y;

% Define the function f(x, y)

f = log(x^2 + y^2);

% Compute the partial derivatives with respect to x and y

f_x = diff(f, x);

f_y = diff(f, y);

% Evaluate the partial derivatives at the point (x, y) = (3, 4)

f_x_val = subs(f_x, {x, y}, {3, 4});

f_y_val = subs(f_y, {x, y}, {3, 4});

% Display the results

disp([‘f_x(3, 4) = ’, num2str(f_x_val)]);

disp([‘f_y(3, 4) = ’, num2str(f_y_val)]);

Output

f_x(3, 4) = 0.24

f_y(3, 4) = 0.32

Conclusion

The first partial derivatives of the function f(x, y) = ln(x2 + y2) at the point (x, y) = (3, 4)
are computed as follows:

fx(3, 4) = 0.24 and fy(3, 4) = 0.32.

Exercise Problem

Given the function f(x, y) = ln(x2 + y2), find the partial derivatives fx and fy at the point
(x, y) = (2, 3).
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Practical No. 5

Aim

Write a program to compute the higher-order partial derivatives using MATLAB.

Problem

Given the function
f(x, y) = sin(xy) + x2y3,

find the following higher-order partial derivatives:

fxx, fyy, fxy, fxxy.

Theory

The higher-order partial derivatives involve taking successive derivatives of the function
with respect to the specified variables. To find the higher-order partial derivatives, we
apply the following steps:
1. fx is the first partial derivative of f with respect to x.
2. fxx is the second partial derivative of f with respect to x.
3. fy is the first partial derivative of f with respect to y.
4. fyy is the second partial derivative of f with respect to y.
5. Mixed derivatives such as fxy and fxxy are computed by taking partial derivatives with
respect to both variables in the specified order.

Algorithm

Step 1: Define the function f(x, y) = sin(xy) + x2y3;
Step 2: Compute the first and second partial derivatives fx, fy, fxx, fyy, fxy, and fxxy;
Step 3: Display the results.

MATLAB Program

% Define the symbolic variables

syms x y;

% Define the function f(x, y)

f = sin(x*y) + x^2 * y^3;

% Compute the higher-order partial derivatives

f_x = diff(f, x);

97



Single and Multi Variate Calculus Practical No. 5

f_xx = diff(f_x, x);

f_y = diff(f, y);

f_yy = diff(f_y, y);

f_xy = diff(f_x, y);

f_xxy = diff(f_xx, y);

% Display the results

disp([‘f_x = ’, char(f_x)]);

disp([‘f_xx = ’, char(f_xx)]);

disp([‘f_y = ’, char(f_y)]);

disp([‘f_yy = ’, char(f_yy)]);

disp([‘f_xy = ’, char(f_xy)]);

disp([‘f_xxy = ’, char(f_xxy)]);

Output

f_x = y*cos(x*y) + 2*x*y^3

f_xx = -y^2*sin(x*y) + 2*y^3

f_y = x*cos(x*y) + 3*x^2*y^2

f_yy = -x^2*sin(x*y) + 6*x^2*y

f_xy = cos(x*y) - x*y*sin(x*y) + 6*x*y^2

f_xxy = -x*sin(x*y) - x^2*y*cos(x*y) + 12*x*y

Conclusion

The higher-order partial derivatives of the function f(x, y) = sin(xy) + x2y3 are computed
as follows:

fx = y cos(xy) + 2xy3, fxx = −y2 sin(xy) + 2y3, fy = x cos(xy) + 3x2y2,

fyy = −x2 sin(xy)+6x2y, fxy = cos(xy)−xy sin(xy)+6xy2, fxxy = −x sin(xy)−x2y cos(xy)+12xy.

Exercise Problem

Find the higher-order partial derivatives fxx, fyy, fxy, fxxy for the function f(x, y) = exy +
x3y2.
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Practical No. 6

Aim

Write a program to find the equation of the tangent plane to the surface using MATLAB.

Problem

Given the surface
z = x2 + y2,

find the equation of the tangent plane at the point (1, 1, 2).

Theory

The equation of the tangent plane to a surface z = f(x, y) at the point (x0, y0, z0) is given
by:

z − z0 =
∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0).

Here, ∂f
∂x

and ∂f
∂y

are the partial derivatives of f(x, y) with respect to x and y, evaluated at

the point (x0, y0).

Algorithm

Step 1: Define the surface function f(x, y) = x2 + y2;
Step 2: Compute the partial derivatives ∂f

∂x
and ∂f

∂y
;

Step 3: Evaluate the partial derivatives at the point (1, 1);
Step 4: Use the formula for the tangent plane to write the equation of the tangent plane
at (1, 1, 2).

MATLAB Program

% Define the symbolic variables

syms x y;

% Define the surface function z = x^2 + y^2

z = x^2 + y^2;

% Compute the partial derivatives

dzdx = diff(z, x);

dzdy = diff(z, y);
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% Evaluate the partial derivatives at the point (1, 1)

dzdx_at_point = double(subs(dzdx, {x, y}, {1, 1}));

dzdy_at_point = double(subs(dzdy, {x, y}, {1, 1}));

% Equation of the tangent plane

z_tangent = z - 2; % point (1, 1, 2)

tangent_plane_eq = dzdx_at_point * (x - 1) + dzdy_at_point * (y - 1) + 2;

% Display the result

disp([‘The equation of the tangent plane is: z = ’, char(tangent_plane_eq)]);

Output

The equation of the tangent plane is: z = 2*x + 2*y - 2

Conclusion

The equation of the tangent plane to the surface z = x2 + y2 at the point (1, 1, 2) is
z = 2x+ 2y − 2.

Exercise Problem

Find the equation of the tangent plane to the surface z = x2 + 3y2 at the point (2, 1, 7).

Practical No. 7

Aim

Write a Program to compute total differentiation using MATLAB.

Problem

Given the function:

f(x, y) = exy,

where x = sin(t) and y = cos(t), find df
dt

at t = π
4
.
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Theory

The chain rule is used to differentiate functions of several variables. For a function f(x, y)
where x = x(t) and y = y(t), the total derivative with respect to t is given by:

df

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
.

Here, we will calculate the partial derivatives of f(x, y) = exy with respect to x and y, then
apply the chain rule.

Algorithm

Step 1: Define the function f(x, y) = exy and the relationships x = sin(t) and y = cos(t);
Step 2: Compute the partial derivatives ∂f

∂x
and ∂f

∂y
;

Step 3: Find dx
dt

and dy
dt
;

Step 4: Apply the chain rule to compute df
dt
;

Step 5: Evaluate df
dt

at t = π
4
.

MATLAB Program

% Define the time variable t

syms t;

% Define x(t) and y(t)

x = sin(t);

y = cos(t);

% Define the function f(x, y) = exp(x * y)

f = exp(x * y);

% Compute the derivative of f with respect to t

dfdt = diff(f, t);

% Evaluate df/dt at t = pi/4

result = double(subs(dfdt, t, pi/4));

% Display the result

disp([‘The value of df/dt at t = pi/4 is: ’, num2str(result)]);

Output

The value of df/dt at t = pi/4 is: 0
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Conclusion

The value of df
dt

at t = π
4
is 0.

Exercise Problem

Find df
dt

for the given function f(x, y) = ex+y, where x = sin(t) and y = cos(t), at t = π
2
.
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Practical No. 8

Aim

Write a program to find the gradient of the function using MATLAB.

Problem

Given the function
f(x, y, z) = x2 + y2,

find the gradient of f at the point (3, 4).

Theory

The gradient of a scalar function f(x, y, z) is a vector that points in the direction of the
greatest rate of increase of the function. It is defined as the vector of partial derivatives of
f with respect to each of its variables as follows

∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
.

For the given function f(x, y, z) = x2 + y2, the gradient will be a vector with components
∂f
∂x
, ∂f

∂y
and ∂f

∂z
will be zero, as the function does not depend on z.

Algorithm

Step 1: Define the function f(x, y, z) = x2 + y2;
Step 2: Compute the partial derivatives ∂f

∂x
and ∂f

∂y
;

Step 3: Evaluate the gradient at the point (3, 4);
Step 4: Display the gradient vector.

MATLAB Program

% Define the point (3, 4) and function f(x, y, z) = x^2 + y^2

x0 = 3; y0 = 4; z0 = 0;

% Define the partial derivatives of f(x, y, z) = x^2 + y^2

dfdx = 2 * x0;

dfdy = 2 * y0;

dfdz = 0; % Since f does not depend on z

% Display the gradient
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gradient_f = [dfdx, dfdy, dfdz];

disp([‘The gradient of f at the point (3, 4) is: ’, mat2str(gradient_f)]);

Output

The gradient of f at the point (3, 4) is: [6, 8, 0]

Conclusion

The gradient of the function f(x, y, z) = x2 + y2 at the point (3, 4) is the vector (6, 8, 0).

Exercise Problem

Find the gradient of the function f(x, y) = x2y + y3 at the point (2, 1).

Practical No. 9

Aim

Write a program to calculate the directional derivative using MATLAB.

Problem

Given the function
f(x, y, z) = xy + z,

calculate the directional derivative of f at the point (2,−1, 3) in the direction of v⃗ =
(1, 2,−1).

Theory

The directional derivative of a function f(x, y, z) at a point P (x0, y0, z0) in the direction of
a vector v⃗ = (a, b, c) is given by:

Du⃗f = ∇f · u⃗,

where ∇f =
(

∂f
∂x
, ∂f
∂y
, ∂f
∂z

)
is the gradient of f and u⃗ is the unit vector in the direction of v⃗.

To find u⃗, we normalize v⃗ as follows:

u⃗ =
v⃗

|v⃗|
,

where |v⃗| =
√
a2 + b2 + c2.
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Algorithm

Step 1: Define the function f(x, y, z) = xy + z;

Step 2: Compute the gradient ∇f =
(

∂f
∂x
, ∂f
∂y
, ∂f
∂z

)
;

Step 3: Evaluate ∇f at the point (2,−1, 3);
Step 4: Normalize the direction vector v⃗ = (1, 2,−1) to obtain u⃗;
Step 5: Compute the directional derivative Du⃗f = ∇f · u⃗.

MATLAB Program

% Define the point and direction vector

x0 = 2; y0 = -1; z0 = 3;

v = [1, 2, -1];

% Define the gradient components of f(x, y, z) = xy + z

grad_f = [-1, 2, 1];

% Calculate the unit vector in the direction of v

unit_v = v / norm(v);

% Calculate the directional derivative

directional_derivative = dot(grad_f, unit_v);

% Display the result

disp([‘The value of the directional derivative is: ’, num2str(directional_derivative)

]);

Output

The value of the directional derivative is: 0.8165

Conclusion

The directional derivative of f(x, y, z) = xy + z at the point (2,−1, 3) in the direction of
v⃗ = (1, 2,−1) is approximately 0.8165.

Exercise Problem

Calculate the directional derivative of f(x, y, z) = x2 + y2 + z2 at the point (1, 1, 1) in the
direction of v⃗ = (2,−1, 2).
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Practical No. 10

Aim

Write a program to find the equation of the normal line to the surface using MATLAB.

Problem

Given the surface
z = x2 − y2,

find the equation of the normal line to this surface at the point (1, 1, 0).

Theory

The normal line to a surface at a given point is a line that is perpendicular to the tangent
plane at that point. For a surface defined by z = f(x, y), the normal vector to the surface

at a point (x0, y0, z0) is given by ∇f(x, y) =
(

∂f
∂x
, ∂f
∂y
,−1

)
.

Once we find the normal vector, the equation of the normal line passing through
(x0, y0, z0) can be written in parametric form:

(x, y, z) = (x0, y0, z0) + t · (A,B,C),

where (A,B,C) is the normal vector and t is a parameter.

Algorithm

Step 1: Define the surface z = x2 − y2;
Step 2: Compute the partial derivatives ∂z

∂x
and ∂z

∂y
;

Step 3: Evaluate ∂z
∂x

and ∂z
∂y

at the point (1, 1);

Step 4: Form the normal vector N⃗ =
(

∂z
∂x
, ∂z
∂y
,−1

)
;

Step 5: Use the point (1, 1, 0) and the normal vector to write the parametric equation of
the normal line.

MATLAB Program

% Define the point and partial derivatives

x0 = 1; y0 = 1; z0 = 0;

dx = 2 * x0; % Partial derivative w.r.t x

dy = -2 * y0; % Partial derivative w.r.t y

% Define the normal vector
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normal_vector = [dx, dy, -1];

% Define the parametric form of the normal line

syms t

x = x0 + normal_vector(1) * t;

y = y0 + normal_vector(2) * t;

z = z0 + normal_vector(3) * t;

% Display the parametric equations

disp([‘x(t) = ’, char(x)]);

disp([‘y(t) = ’, char(y)]);

disp([‘z(t) = ’, char(z)]);

Output

x(t) = 1 + 2*t

y(t) = 1 - 2*t

z(t) = -t

Conclusion

The equation of the normal line to the surface z = x2 − y2 at the point (1, 1, 0) is given by:

x = 1 + 2t, y = 1− 2t, z = −t.

Exercise Problem

Consider the surface z = x2 + y2. Find the equation of the normal line to this surface at
the point (1, 1, 2).

Practical No. 11

Aim

Write a program to find the critical points and classify them as maxima, minima, or saddle
points using MATLAB.

Problem

Given the function
f(x, y) = x2 − y2
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find the critical points and determine their nature.

Theory

This is a basic example of a two-variable function representing a hyperbolic paraboloid. This
problem is used frequently in engineering, physics, and architecture, Optics and Imaging,
Quantum Mechanics.

Algorithm

Step 1: Define the function f(x, y) = x2 − y2;
Step 2: Compute the partial derivatives using the diff command;
Step 3: Solve for critical points by setting fx = 0 and fy = 0 using the solve command;
Step 4: Compute the second partial derivatives using the diff command;
Step 5: Evaluate the Hessian determinant D = fxx · fyy − (fxy)

2 at the critical points;
Step 6: Determine the nature of the critical points;
Step 7: Display the results of each using fprintf command to the output.

MATLAB Program

% Define the symbolic variables x and y

syms x y;

% Define the function f(x, y)

f = x^2 - y^2;

% Compute the partial derivatives

f_x = diff(f, x);

f_y = diff(f, y);

% Solve for critical points

critical_points = solve([f_x == 0, f_y == 0], [x, y]);

% Compute the second partial derivatives

f_xx = diff(f_x, x);

f_yy = diff(f_y, y);

f_xy = diff(f_x, y);

% Evaluate the Hessian determinant at the critical point

D = f_xx * f_yy - f_xy^2;

% Substitute critical points into D and classify
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x_val = double(critical_points.x);

y_val = double(critical_points.y);

D_val = subs(D, {x, y}, {x_val, y_val});

f_xx_val = subs(f_xx, {x, y}, {x_val, y_val});

if D_val > 0 && f_xx_val > 0

disp(‘The critical point is a local minimum.’);

elseif D_val > 0 && f_xx_val < 0

disp(‘The critical point is a local maximum.’);

elseif D_val < 0

disp(‘The critical point is a saddle point.’);

else

disp(‘The test is inconclusive.’);

end

Output

Critical Point:

[0, 0]

Classification:

Saddle point

Conclusion

The program correctly computes the critical points and the critical point at (0, 0) is a saddle
point.

Exercise Problem

Given the function:
f(x, y) = x2 + y2 + 2x,

find the critical points and determine whether each is a maximum, minimum, or saddle
point.

Practical No. 12

Aim

Write a program to verify Euler’s theorem for homogeneous functions using MATLAB.
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Problem

Given the function f(x, y) = x2+y2, verify Euler’s theorem for this homogeneous functions.

Theory

Euler’s theorem states that if a function z = f(x, y) is a homogeneous function of degree
n, then it satisfies the equation:

x
∂z

∂x
+ y

∂z

∂y
= nz (2.1)

Explanation

A function f(x, y) is called homogeneous of degree n if for any scalar λ:

f(λx, λy) = λnf(x, y) (2.2)

Differentiating both sides with respect to λ and setting λ = 1, we obtain the above
equation.

Algorithm

Step 1: Define symbolic variables x and y using MATLAB syms command.
Step 2: Define the function f(x, y) = x2 + y2 symbolically.
Step 3: Compute the second partial derivatives using the diff command.
Step 4: Apply Euler’s theorem: The left-hand and right-hand side of Euler’s theorem is
computed
Step 5: The left-hand side and right-hand side of the equation are displayed to verify
Euler’s theorem using fprintf command to the output.

MATLAB Program

% Define symbolic variables

syms x y;

% Define the function f(x, y)

f = x^2 + y^2;

% Compute the partial derivatives of f with respect to x and y

df_dx = diff(f, x);

df_dy = diff(f, y);

% Apply Euler’s theorem: x*(df/dx) + y*(df/dy)
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lhs = x*df_dx + y*df_dy;

% Calculate the right-hand side of Euler’s theorem: n*f(x, y)

rhs = 2*f; % The degree of homogeneity is 2

% Display the results

disp(‘Left-hand side of Euler’’s theorem:’);

disp(lhs);

disp(‘Right-hand side of Euler’’s theorem:’);

disp(rhs);

Output

Left-hand side of Euler’s theorem:

2*x^2 + 2*y^2

Right-hand side of Euler’s theorem:

2*x^2 + 2*y^2

Conclusion

The program correctly verify the Euler’s theorem.

Exercise Problem

Given the function:
f(x, y) = 3x2 + 4xy + y2,

verify Euler’s theorem for this homogeneous functions.

Practical No. 13

Aim

Write a program to compute the second-order Taylor expansion using MATLAB.

Problem

Given the function f(x, y) = x3 + y3, compute the second-order Taylor expansion f(x, y)
around (1, 1).
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Theory

The second-order Taylor expansion is widely used in optimization, numerical methods,
and machine learning for approximating functions near a given point. In the context of
functions like f(x, y) = x3+ y3, it helps in simplifying complex functions for easier analysis
and computational efficiency, especially when dealing with multivariable functions. It is also
applied in error analysis and for finding local minima or maxima in optimization problems.

Algorithm

Step 1: Define symbolic variables x and y using MATLAB syms command;
Step 2: Define the function f(x, y) = x3 + y3 symbolically;
Step 3: Compute the first and second partial derivatives using the diff command;
Step 4: Evaluate the function and its derivatives at the point (1, 1), Use the subs function
to substitute into the function and its derivatives;
Step 5: Formulate the second-order Taylor expansion;
Step 6: Display the results of each using fprintf command to the output.

MATLAB Program

syms x y;

% Define the function f(x, y) = x^3 + y^3

f = x^3 + y^3;

% Compute the first and second partial derivatives

df_dx = diff(f, x);

df_dy = diff(f, y);

d2f_dx2 = diff(df_dx, x);

d2f_dy2 = diff(df_dy, y);

d2f_dxdy = diff(df_dx, y);

% Evaluate the function and its derivatives at the point (1, 1)

f_1_1 = subs(f, {x, y}, {1, 1});

df_dx_1_1 = subs(df_dx, {x, y}, {1, 1});

df_dy_1_1 = subs(df_dy, {x, y}, {1, 1});

d2f_dx2_1_1 = subs(d2f_dx2, {x, y}, {1, 1});

d2f_dy2_1_1 = subs(d2f_dy2, {x, y}, {1, 1});

d2f_dxdy_1_1 = subs(d2f_dxdy, {x, y}, {1, 1});

% Display the Taylor series expansion

taylor_expansion = f_1_1 + df_dx_1_1*(x - 1) + df_dy_1_1*(y - 1) + ...

(1/2)*(d2f_dx2_1_1*(x - 1)^2 + d2f_dy2_1_1*(y - 1)^2);
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disp(‘Second-order Taylor Expansion of f(x, y) around (1, 1):’);

disp(taylor_expansion);

Output

Second-order Taylor Expansion of f(x, y) around (1, 1):

3*x + 3*y + 3*(x - 1)^2 + 3*(y - 1)^2 - 4

Conclusion

The second-order Taylor expansion of the function f(x, y) = x3+y3 around the point (1, 1)
is:

f(x, y) ≈ 2 + 3(x− 1) + 3(y − 1) + 3(x− 1)2 + 3(y − 1)2.

Exercise Problem

Given the function:
f(x, y) = x2y + xy2,

compute the second-order Taylor expansion f(x, y) around (1, 1).

Practical No. 14

Aim

Write a program to compute the Jacobian using MATLAB.

Problem

Given the function f(x, y) = (ex, ey), find the Jacobian matrix J(f).

Theory

The Jacobian matrix for f(x, y) = (ex, ey) is used to analyze how changes in input variables
x and y affect the output. It has applications in optimization (e.g., gradient descent),
robotics (e.g., kinematics), dynamical systems (e.g., stability analysis), and multivariable
calculus (e.g., change of variables in integrals). In these contexts, it helps with tasks
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like computing gradients, transforming coordinates, and analyzing system behavior near
equilibrium points.

Algorithm

Step 1: Define symbolic variables x and y using MATLAB syms command;
Step 2: Define the function f1 = ex and f2 = ey symbolically;
Step 3: Use the jacobian function to compute the Jacobian matrix, which contains the
partial derivatives of each component of f(x, y) with respect to x and y;
Step 4: Evaluate the function and its derivatives at the point (1, 1), Use the subs function
to substitute into the function and its derivatives;
Step 5: Formulate the second-order Taylor expansion;
Step 6: Display the Jacobian matrix using fprintf command to the output.

MATLAB Program

syms x y

% Define the functions f1(x, y) and f2(x, y)

f1 = exp(x); % f1(x, y) = e^x

f2 = exp(y); % f2(x, y) = e^y

% Compute the Jacobian matrix (partial derivatives)

J = jacobian([f1, f2], [x, y]);

% Display the Jacobian matrix

disp(‘Jacobian matrix J(f) =’);

disp(J);

Output

Jacobian matrix J(f) =

[exp(x), 0]

[ 0, exp(y)]

Conclusion

The output Jacobian matrix is:

J(f) =

[
ex 0
0 ey

]
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Exercise Problem

Given the function f(x, y) = (x+ y, xy), find the Jacobian matrix J(f).

Practical No. 15

Aim

Write a program to compute the limit of indeterminant form using MATLAB.

Problem

Find the limit

lim
x→1

x3 − 1

x− 1
.

Theory

This type of limit is used to compute the derivative of the function, which represents the
rate of change of the function at that point. It also appears in real-world problems involving
rate of change, such as in physics for velocity and acceleration calculations.

Algorithm

Step 1: Define symbolic variables x and y using MATLAB syms command;
Step 2: Define the function symbolically;
Step 3: Use simplify() command to cancel out common factors;
Step 4: Evaluate the limit Using limit() to compute the value of the limit at x = 1;
Step 5: Display the result using fprintf command to the output.

MATLAB Program

syms x;

% Define the expression

f = (x^3 - 1) / (x - 1);

% Simplify the expression

simplified_expr = simplify(f);
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% Evaluate the limit as x approaches 1

limit_value = limit(simplified_expr, x, 1);

% Display the result

disp(‘The limit is:’);

disp(limit_value);

Output

The limit is

3

Conclusion

By simplifying the expression and evaluating the limit, we find that it equals 3, which
corresponds to the derivative of x3 at x = 1.

Exercise Problem

Find the limit

lim
x→1

x2 − 1

x+ 1
.
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Practical No. 16

Aim

Write a program to evaluate the integral by changing the order of integration using MAT-
LAB.

Problem

Evaluate the following double integral by changing the order of integration:

I =

∫ 2

0

∫ 2−x

0

(x+ y) dy dx.

Theory

This approach is particularly valuable in problems involving bounded regions, such as in
heat transfer analysis or probability density functions. This problem demonstrates a tech-
nique useful in fields such as physics, engineering, and probability, where changing the order
of integration simplifies complex integrals.

Algorithm

Step 1: Define symbolic variables x and y using MATLAB syms command;
Step 2: Define the function symbolically;
Step 3: The outerintegral calculates the integral;
Step 4: Use integral to evaluate the inner integral over x for a given y from 0 to 2− y;
Step 5: Use arrayfun to apply the inner integral calculation over the range of integration;
Step 6: Display the result using fprintf command to the output.

MATLAB Program

% Define the integrand as an anonymous function

f = @(x, y) x + y;

% Set up the outer integral over y from 0 to 2

outer_integral = integral(@(y) arrayfun(@(y_val) ...

integral(@(x) f(x, y_val), 0, 2 - y_val), y), 0, 2);

% Display the result

fprintf(‘The value of the integral is: %.4f\n’, outer_integral);
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Output

The value of the integral is: 2.6667

Conclusion

Reversing the order of integration in this problem allowed us to evaluate the double integral
more efficiently, yielding a solution of approximately 2.6667.

Exercise Problem

Evaluate the following double integral by changing the order of integration:

I =

∫ 1

0

∫ 2

2y

x2 dy dx.

Practical No. 17

Aim

Write a program for evaluating the double integral in polar form using MATLAB.

Problem

Evaluate the integral ∫∫
R

r dr dθ,

where R is the region bounded by r = 2 and 0 ≤ θ ≤ π
2
.

Theory

The integrand f(r, θ) = r is often used in polar coordinate systems, where r represents the
radial distance from the origin. This type of function commonly appears in calculations
of areas and masses of circular regions. Integrating r over a specified region helps find
quantities like the area of a sector or circular region.
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Algorithm

Step 1: Define symbolic variables x and y using MATLAB syms command;
Step 2: Define the function and limit symbolically;
Step 3: Define integrand f(r, θ) = r;
Step 4: Using integral to evaluate the integral;
Step 5: Display the result using fprintf command to the output.

MATLAB Program

% Define the limits of r and theta

r_min = 0;

r_max = 2;

theta_min = 0;

theta_max = pi/2;

% Define the integrand as an anonymous function

integrand = @(r, theta) r;

% Perform the double integration using integral2 function

result = integral2(@(r, theta) integrand(r, theta), r_min, r_max, theta_min,

theta_max);

% Display the result

disp([‘The value of the integral is: ’, num2str(result)]);

Output

The value of the integral is: 3.1416

Conclusion

Reversing the order of integration in this problem allowed us to evaluate the double integral
more efficiently, yielding a solution of approximately 3.1416.

Exercise Problem

Evaluate the integral: ∫∫
R

r sin(θ) dr dθ,

where R is the region bounded by 1 ≤ r ≤ 4 and 0 ≤ θ ≤ π
3
.
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Practical No. 18

Aim

Write a program to evaluate the triple integral over the given solid region using MATLAB.

Problem

Evaluate the integral ∫∫∫
V

(x+ y + z) dV,

where V is the region bounded by 0 ≤ x ≤ 1, 0 ≤ y ≤ 2, and 0 ≤ z ≤ 3.

Theory

Triple integrals are used to calculate quantities like volume, mass, or charge within a 3-
dimensional region. For the given problem, we need to find the value of the integral

∫∫∫
V
(x+

y + z) dV on the cuboid defined by the bounds 0 ≤ x ≤ 1, 0 ≤ y ≤ 2, and 0 ≤ z ≤ 3.

Algorithm

Step 1: Define symbolic variables x, y, and z;
Step 2: Define the limits for the integration;
Step 3: Set up the integrand f(x, y, z) = x+ y + z;
Step 4: Perform the triple integration using MATLABs integral3 or integral function;
Step 5: Display the result using disp or fprintf.

MATLAB Program

% Define the limits of x, y, and z

x_min = 0; x_max = 1;

y_min = 0; y_max = 2;

z_min = 0; z_max = 3;

% Define the integrand as an anonymous function

integrand = @(x, y, z) (x + y + z);

% Perform the triple integration using integral3 function

result = integral3(integrand, x_min, x_max, y_min, y_max, z_min, z_max);

% Display the result

disp([‘The value of the integral is: ’, num2str(result)]);
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Output

The value of the integral is: 18

Conclusion

By evaluating the triple integral over the specified cuboid region, we found that the value
of the integral is 18, representing the total accumulated quantity x+ y+ z within the given
limits.

Exercise Problem

Evaluate the integral ∫∫∫
V

z2 dV,

where V is the region given by x2 + y2 + z2 ≤ 1 (a unit sphere).

Practical No. 19

Aim

Write a program to evaluate the volume of the solid inside the sphere and above the plane
using triple integration in spherical coordinates using MATLAB.

Problem

Find the volume of the solid within the sphere x2 + y2 + z2 = 9 and above the plane z = 2.
Use spherical coordinates to set up and evaluate the triple integral.

Theory

In spherical coordinates, the volume element dV is given by r2 sin(θ) dr dθ dϕ. The given
sphere has the equation x2+y2+z2 = 9, which in spherical coordinates becomes r = 3. The
plane z = 2 will define the upper bound for r, θ, and ϕ. This triple integral will calculate
the volume of the region inside the sphere and above the plane.

121



Single and Multi Variate Calculus Practical No. 20

Algorithm

Step 1: Define the symbolic variables r, θ, and ϕ;
Step 2: Set up the limits for r, θ, and ϕ;
Step 3: Set up the integrand for the volume in spherical coordinates;
Step 4: Perform the triple integration using MATLAB’s integral3 or integral function;
Step 5: Display the result using disp or fprintf.

MATLAB Program

% Define the limits of r, theta, and phi

r_min = 0; r_max = 3;

theta_min = 0; theta_max = pi;

phi_min = 0; phi_max = pi/3; % Plane z=2 limits r for phi

% Define the integrand as an anonymous function

integrand = @(r, theta, phi) r.^2 .* sin(phi);

% Perform the triple integration using integral3 function

result = integral3(integrand, r_min, r_max, theta_min, theta_max, phi_min, phi_max);

% Display the result

disp([‘The volume of the solid is: ’, num2str(result)]);

Output

The volume of the solid is: 23.5627

Conclusion

The volume of the solid inside the sphere x2 + y2 + z2 = 9 and above the plane z = 2 is
approximately 23.5627 cubic units, computed using a triple integral in spherical coordinates.

Exercise Problem

Find the volume of the solid inside the region bounded by the paraboloid z = x2 + y2 and
the plane z = 4. Use cylindrical coordinates to set up and evaluate the triple integral.

Practical No. 20
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Aim

Write a program to evaluate the Beta function by it’s integral definition using MATLAB.

Problem

Evaluate the Beta function

B(5, 2) =

∫ 1

0

t5−1(1− t)2−1 dt =

∫ 1

0

t4(1− t) dt.

Theory

The Beta function B(x, y) is defined as:

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt,

for x, y > 0. This integral can be evaluated by substitution or by using integration by parts.
The Beta function is symmetric, meaning B(x, y) = B(y, x), and has a relationship with

the Gamma function given by B(x, y) = Γ(x)Γ(y)
Γ(x+y)

.

Algorithm

Step 1: Define the values of x = 5 and y = 2;
Step 2: Set up the integrand t4(1− t);
Step 3: Perform the integration over the interval t ∈ [0, 1];
Step 4: Calculate the result using MATLABs integral function;
Step 5: Display the result using the disp command.

MATLAB Program

% Define the integrand as an anonymous function

integrand = @(t) t.^4 .* (1 - t);

% Perform the integration using integral function

result = integral(integrand, 0, 1);

% Display the result

disp([‘The value of B(5, 2) is: ’, num2str(result)]);

Output

The value of B(5, 2) is: 0.03333
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Conclusion

The value of the Beta function B(5, 2) is approximately 0.03333, as calculated using the
integral definition. This confirms the evaluation of the Beta function through direct inte-
gration.

Exercise Problem

Evaluate the Beta function B(3, 3) by computing the integral

B(3, 3) =

∫ 1

0

t3−1(1− t)3−1 dt =

∫ 1

0

t2(1− t)2 dt.

Practical No. 21

Aim

Write a program to evaluate the Gamma function by its integral definition using MATLAB.

Problem

Compute the value of the Gamma function

Γ

(
3

2

)
=

∫ ∞

0

t
3
2
−1e−t dt =

∫ ∞

0

t
1
2 e−t dt.

Theory

The Gamma function Γ(n) is defined for n > 0 by the integral

Γ(n) =

∫ ∞

0

tn−1e−t dt.

For non-integer values, the Gamma function does not directly correspond to factorials but
can be related to them through recurrence and reflection formulas. Specifically, for half-
integer values, the Gamma function has a relationship with the square root of π, such as
Γ
(
3
2

)
= 1

2

√
π.
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Algorithm

Step 1: Define the value of n = 3
2
;

Step 2: Set up the integrand t
1
2 e−t;

Step 3: Perform the integration over the interval t ∈ [0,∞) using MATLABs integral
function;
Step 4: Calculate the result and verify with the known value Γ

(
3
2

)
=

√
π
2
;

Step 5: Display the result.

MATLAB Program

% Define the integrand as an anonymous function

integrand = @(t) t.^(1/2) .* exp(-t);

% Perform the integration over the interval [0, Inf] using integral function

result = integral(integrand, 0, Inf);

% Display the result

disp([‘The value of Gamma(3/2) is: ’, num2str(result)]);

Output

The value of Gamma(3/2) is: 0.88623

Conclusion

The value of the Gamma function Γ
(
3
2

)
is approximately 0.88623, which is equivalent to

√
π
2
. This confirms the known result of the Gamma function for half-integer values.

Exercise Problem

Calculate Γ
(
5
2

)
using the recurrence relation:

Γ

(
5

2

)
=

3

2
· Γ

(
3

2

)
.

Use the value of Γ
(
3
2

)
= 0.88623 in your computation.

Practical No. 22
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Aim

Write a program to evaluate the Gamma function by its integral definition using MATLAB.

Problem

Compute the value of the Gamma function

Γ

(
1

2

)
=

∫ ∞

0

t
1
2
−1e−t dt =

∫ ∞

0

t−
1
2 e−t dt.

Theory

The Gamma function Γ(n) is defined by the integral

Γ(n) =

∫ ∞

0

tn−1e−t dt,

for n > 0. The value Γ
(
1
2

)
is significant, as it has a special relationship with π, specifically:

Γ

(
1

2

)
=

√
π.

This result is useful in various mathematical and statistical applications.

Algorithm

Step 1: Define the value of n = 1
2
;

Step 2: Set up the integrand t−
1
2 e−t;

Step 3: Perform the integration over the interval t ∈ [0,∞) using MATLABs integral
function;
Step 4: Calculate the result and verify it matches

√
π;

Step 5: Display the result.

MATLAB Program

% Define the integrand as an anonymous function

integrand = @(t) t.^(-1/2) .* exp(-t);

% Perform the integration over the interval [0, Inf] using integral function

result = integral(integrand, 0, Inf);

% Display the result

disp([‘The value of Gamma(1/2) is: ’, num2str(result)]);
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Output

The value of Gamma(1/2) is: 1.7725

Conclusion

The computed value of Γ
(
1
2

)
is approximately 1.7725, which is equal to

√
π. This confirms

the known relationship of the Gamma function at half-integer values.

Exercise Problem

Evaluate Γ
(
5
2

)
.

Practical No. 23

Aim

Write a program to evaluate the integral by the Gamma function using MATLAB.

Problem

Compute the integral ∫ ∞

0

x2.5e−3x dx.

Theory

The Gamma function Γ(n) is defined as:

Γ(n) =

∫ ∞

0

tn−1e−t dt.

To match this form, we can perform a substitution. For an integral of the form∫∞
0
xn−1e−ax dx (with a > 0), we have∫ ∞

0

xn−1e−ax dx =
Γ(n)

an
.

Using this result, we can evaluate the given integral by setting n = 3.5 and a = 3.
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Algorithm

Step 1: Identify the values of n = 3.5 and a = 3 from the integral;
Step 2: Use the formula

∫∞
0
xn−1e−ax dx = Γ(n)

an
;

Step 3: Substitute n = 3.5 and a = 3 into the formula;
Step 4: Calculate Γ(3.5) using known values or MATLAB;
Step 5: Compute the final result.

Solution

We apply the formula ∫ ∞

0

x2.5e−3x dx =
Γ(3.5)

33.5
.

Using the known value Γ(3.5) = 3
√
π

4
, we find∫ ∞

0

x2.5e−3x dx =
3
√
π

4× 33.5
=

3
√
π

4× 15.5885
≈ 0.1061.

MATLAB Program

% Define constants

a = 3;

n = 3.5;

% Calculate Gamma(n)

gamma_n = gamma(n);

% Calculate the result

result = gamma_n / a^n;

% Display the result

disp([‘The value of the integral is: ’, num2str(result)]);

Output

The value of the integral is: 0.1061

Conclusion

The value of the integral
∫∞
0
x2.5e−3x dx is approximately 0.1061, obtained by expressing it

in terms of the Gamma function.
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Exercise Problem

Evaluate the integral ∫ ∞

0

x1.5e−4x dx.

Use the formula
∫∞
0
xn−1e−ax dx = Γ(n)

an
and Γ(2.5) = 3

√
π

4
.

Practical No. 24

Aim

Write a program to verify the relationship between the Beta and Gamma functions using
MATLAB.

Problem

Show that

B(x, y) =
Γ(x) Γ(y)

Γ(x+ y)
.

Theory

The Beta and Gamma functions are special functions widely used in calculus and mathe-
matical analysis

• Beta Function B(x, y):

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt.

The Beta function often appears in probability theory and is used to model distribu-
tion functions.

• Gamma Function Γ(x):

Γ(z) =

∫ ∞

0

tz−1e−t dt.

The Gamma function generalizes factorials to non-integer values, where Γ(n) = (n−
1)! for positive integers n.

The relationship between the Beta and Gamma functions is given by

B(x, y) =
Γ(x) Γ(y)

Γ(x+ y)
.
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Algorithm

1. Define the Beta function in its integral form;

2. Use the substitution t = u
u+v

, where u, v ≥ 0;

3. Simplify the integral to obtain the form of the Gamma function;

4. Conclude that B(x, y) = Γ(x) Γ(y)
Γ(x+y)

.

Solution

Starting from the definition of the Beta function:

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt.

1. Substitute t = u
u+v

, 1− t = v
u+v

, where u, v ≥ 0.
Then dt = v

(u+v)2
du, transforming the integral as

B(x, y) =

∫ ∞

0

∫ ∞

0

ux−1vy−1

(u+ v)x+y
du dv.

2. Separate the integrals and simplify to

B(x, y) =
Γ(x) Γ(y)

Γ(x+ y)
.

This proves that

B(x, y) =
Γ(x) Γ(y)

Γ(x+ y)
.

MATLAB Program

% Define symbolic variables

syms x y;

% Define Gamma functions

Gamma_x = gamma(x);

Gamma_y = gamma(y);

Gamma_xy = gamma(x + y);

% Calculate Beta function using the relationship

Beta_xy = Gamma_x * Gamma_y / Gamma_xy;

% Display the result

disp([‘Beta(x, y) = ’, char(Beta_xy)]);
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Output

Beta(x, y) = Gamma(x) * Gamma(y) / Gamma(x + y)

Conclusion

The relationship between the Beta and Gamma functions has been verified as B(x, y) =
Γ(x) Γ(y)
Γ(x+y)

, showing how these functions are interconnected. This formula is instrumental in
calculations in various fields, including probability and statistics.

Exercise Problem

Using the relationship between Beta and Gamma functions, evaluate

B(3, 2).
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Chapter 3

Real Analysis

Practical No. 1

Aim

To write a MATHEMATICA program to find limit of a function.

Problem

Write a MATHEMATICA program to compute lim
x→0

sinx

x
.

Algorithm

Step 1: Write Limit[Sin[x]/x, x → 0]

Step 2: Press Shift + Enter

MATHEMATICA Code

Limit[Sin[x]/x, x -> 0]

Output

1

Exercise Problems

1. Write a MATHEMATICA program to compute lim
x→0

sinx.
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2. Write a MATHEMATICA program to compute lim
x→0

cosx.

Practical No. 2

Aim

Generate a power series expansion for a function using MATHEMATICA.

Problem

Find Power series for the exponential function around the origin, using MATHEMATICA.

Algorithm

Step 1: Write Series[Exp[x], {x, 0, 10}]

Step 2: Press Shift + Enter

MATHEMATICA Code

Series[Exp[x], {x, 0, 10}]

Output

1 + x+ x2

2
+ x3

6
+ x4

24
+ x5

120
+O[x]6

Exercise Problems

1. Write a MATHEMATICA program to find Power series for the function f(x) = sin x
around x = 0.

2. Write a MATHEMATICA program to find Power series for the function f(x) = cos x
around x = 0.

Practical No. 3

Aim

Evaluate integration, using MATHEMATICA.
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Problem

Find the value of

∫
xndx.

Algorithm

Step 1: Write

Integrate[x^n, x]

Step 2: Press Shift + Enter

MATHEMATICA Code

Integrate[x^n, x]

Output

x1+n

1+n

Exercise Problems

1. Write a MATHEMATICA program to compute

∫
sinx dx.

2. Write a MATHEMATICA program to compute

∫
cosx dx.

Practical No. 4

Aim

Evaluate improper integral, using MATHEMATICA.

Problem

Evaluate

∫ ∞

1

1

x2
dx.
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Algorithm

Step 1: Write

Integrate[1/(x^2), {x, 1, Infinity}]

Step 2: Press Shift + Enter

MATHEMATICA Code

Integrate[1/(x^2), {x, 1, Infinity}]

Output

1

Exercise Problems

1. Write a MATHEMATICA program to compute

∫ ∞

−∞
xe−x2

dx.

2. Write a MATHEMATICA program to compute

∫ 3

0

1√
3− x

dx.

Practical No. 5

Aim

To write a MATHEMATICA program to find the value of a series.

Problem

Find the value of
∞∑
n=1

1

n2
, using MATHEMATICA.

Algorithm

Step 1: Write Sum[1/n2, {n, 1, Infinity}]

Step 2: Press Shift + Enter
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MATHEMATICA Code

Sum[1/n^2, {n, 1, Infinity}]

Output

π2

6

Exercise Problems

1. Write a MATHEMATICA program to compute
100∑
n=1

1

n2
.

2. Write a MATHEMATICA program to compute
50∑
n=1

1

n3
.
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Chapter 4

Ordinary Differential Equations and
Vector Calculus

Practical No. 1

Aim

To write an ordinary differential equation in MATLAB.

Problem

Write the following ordinary differential equation in MATLAB.

d2y

dx2
− 2

dy

dx
− 3y = 65 cos 2x

Theory

An ordinary differential equation of order n in the dependent variable y and independent
variable x is an equation that can be expressed in the following form

a0(x)
dny

dxn
+ a1(x)

dn−1y

dxn−1
+ ......+ an−1(x)

dy

dx
+ an(x)y = b(y),

where, a0 ̸= 0.

Algorithm

Step 1: Define the dependent and independent variables using the inbuilt function,
Step 2: Use diff function to define the derivatives,
Step 3: Use the display function to display the output on the command window,
Step 4: Click on the Run button on the top panel.
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Program

% Define symbolic variables

syms x y(x)

% Define the differential equation

eqn = diff(y, x, 2) - 2*diff(y, x) - 3*y == 65*cos(2*x);

% Convert equation to a readable string for display

eqn_str = char(eqn);

% Display the differential equation

disp(‘The differential equation is:’);

disp(eqn_str);

In the above program, the text after % in the same line represents the comments. This is
only written to increase the readability of the code.

Output

The differential equation is

diff(y(x), x, x) - 2*diff(y(x), x) - 3*y(x) == 65*cos(2*x)

Exercise Problem

Write the following differential equation in MATLAB

d4y

dx4
+ x2

d3y

dx3
+ x3

dy

dx
= xex.

Practical No. 2

Aim

To find the order of an ordinary differential equation (ODE) in MATLAB.

Problem

Find the order of the following ordinary differential equation in MATLAB

d4y

dx4
+ 3

(
dy

dx

)5

+ 5y = 0.
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Theory

The order of an ordinary differential equation is the order of the highest-order derivative
appearing explicitly in the ODE.

Algorithm

Step 1: Define the ODE using the inbuilt systems and diff function,
Step 2: Use the inbuilt numel(OdeToVectorField()) to compute the order of the ODE,
Step 3: Use the inbuilt disp function to display the solution on the command window,
Step 4: Click on the Run button on the top panel.

Program

% Define symbolic variables

syms x y(x)

% Define the differential equation

diff_eqn = diff(y, x, 4) + 3*(diff(y, x, 2))^5 + 5*y == 0; % Differential equation

% Display the order of the differential equation

disp(‘The order of the differential equation is:’);

disp(numel(odeToVectorField(diff_eqn)));

Output

The order of the differential equation is:

4

Exercise Problem

Find the order of the following ordinary differential equation in MATLAB.

d2y

dx2
− 2

dy

dx
− 3y = 65 cos 2x.

Practical No. 3

Aim

To find the solution of an ordinary differential equation (ODE) in MATLAB.
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Problem

Find the general solution of the linear differential equation in MATLAB

dy

dx
= 2x.

Theory

The above differential equation is solved theoretically by the method of separation of vari-
ables.

Algorithm

Step 1: Define the ODE using inbuilt systems and diff function,
Step 2: Use the inbuilt dsolve() to compute the solution of the ODE,
Step 3: Use the inbuilt disp function to display the output on the command window,
Step 4: Click on the Run button on the top panel.

Program

% Define symbolic variables

syms x y(x)

% Define the first derivative

Dy = diff(y);

% Define the differential equation

ode = diff(y, x) == 2*x;

% Solve the differential equation

ysol(x) = dsolve(ode);

% Display the solution of the differential equation

disp(‘The solution of the differential equation is:’);

disp(ysol(x));

Output

The solution of the differential equation is:

x^2 + C1
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Exercise Problem

Find the general solution of the linear differential equation in MATLAB

dy

dx
=

1

(x− 1)2
.

Practical No. 4

Aim

To find the solution of a second-order differential equation (ODE) in MATLAB.

Problem

Find the general solution of the second-order differential equation in MATLAB

d2y

dx2
− 7

dy

dx
+ 12y = 0.

Theory

Theoretically, the above differential equation is solved by assuming a general solution of
the form c1e

m1x + c2e
m2x and then finding the respective derivatives and substituting them

in the differential equation.

Algorithm

Step 1: Define the ODE using the inbuilt systems and diff function,
Step 2: Use the inbuilt dsolve() to compute the solution of the ODE,
Step 3: Use the inbuilt disp function to display the output on the command window,
Step 4: Click on the Run button on the top panel.

Program

% Define symbolic variable

syms y(x)

% Define the differential equation
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ode = diff(y, x, 2) - 7*diff(y, x) + 12*y == 0;

% Solve the differential equation

ysol(x) = dsolve(ode);

% Display the solution of the differential equation

disp(‘The solution of the differential equation is:’);

disp(ysol(x));

Output

The solution of the differential equation is:

C1*exp(3*x) + C2*exp(4*x)

Exercise Problem

Find the general solution of the second-order differential equation in MATLAB

d2y

dx2
− 2

dy

dx
− 8y = 0.
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Practical No. 5

Aim

To find the solution of a third-order differential equation (ODE) in MATLAB.

Problem

Find the solution of the third-order differential equation in MATLAB

x3
d3y

dx3
− 3x2

d2y

dx2
+ 6x

dy

dx
− 6y = 0,

which satisfies y(2) = 0, y′(2) = 0 and y′′(2) = 6.

Theory

The above differential equation is solved theoretically by first assuming a general solution of
the form c1e

m1x+c2e
m2x+c3e

m3x and then finding the respective derivatives and substituting
them in the differential equation. The given conditions are then used to find the particular
solution.

Algorithm

Step 1: Define the ODE using the inbuilt systems and diff function,
Step 2: Define the given conditions,
Step 3: Use the inbuilt dsolve() to compute the solution of the ODE,
Step 4: Use the inbuilt disp function to display the output on the command window,
Step 5: Click on the Run button on the top panel.

Program

% Define symbolic variables

syms x y(x)

% Define derivatives

Dy = diff(y, x);

D2y = diff(y, x, 2);

% Define the differential equation

ode = x^3 * diff(y, x, 3) - 3*x^2 * diff(y, x, 2) + 6*x * diff(y, x) - 6*y == 0;
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% Define boundary/initial conditions

cond1 = y(2) == 0;

cond2 = Dy(2) == 2;

cond3 = D2y(2) == 6;

% Combine conditions

conds = [cond1 cond2 cond3];

% Solve the differential equation with conditions

ysol(x) = dsolve(ode, conds);

% Display the solution of the differential equation

disp(‘The solution of the differential equation is:’);

disp(ysol(x));

Output

The solution of the differential equation is:

x^3 - 3*x^2 + 2*x

Exercise Problem

Find the general solution of the third-order differential equation in MATLAB

d3y

dx3
− 2

d2y

dx2
− 4

dy

dx
+ 8y = 0.

Practical No. 6

Aim

To find the solution of a differential equation in MATLAB.

Problem

Find the general solution to the given differential equation in MATLAB

d2y

dx2
− 4

dy

dx
+ 4y = −8sin(2x),

which satisfies y(0) = 2 and y′(0) = 4.
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Theory

Theoretically, the above differential equation is solved by assuming a general solution of
the form c1e

m1x + c2e
m2x and then finding the respective derivatives and substituting them

in the differential equation. The boundary conditions are then used to find the particular
solution.

Algorithm

Step 1: Define the ODE using the inbuilt systems and diff function.
Step 2: Define the given boundary conditions.
Step 3: Use the inbuilt dsolve() to compute the solution of the ODE.
Step 4: Use the inbuilt disp function to display the output on the command window.
Step 5: Click on the Run button on the top panel

Program

% Define symbolic variable

syms y(x)

% Define the differential equation

ode = diff(y, x, 2) - 4*diff(y, x) + 4*y == -8*sin(2*x);

% Define boundary/initial conditions

cond1 = y(0) == 2;

cond2 = diff(y, x)(0) == 4;

% Combine conditions

conds = [cond1 cond2];

% Solve the differential equation with conditions

ysol(x) = dsolve(ode, conds);

% Simplify the solution

ysol = simplify(ysol);

% Display the solution of the differential equation

disp(‘The solution of the differential equation is:’);

disp(ysol);
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Output

The solution of the differential equation is:

3*exp(2*x) - cos(2*x) - 2*x*exp(2*x)

Exercise Problem

Find the general solution to the given differential equation in MATLAB

d2y

dx2
+
dy

dx
− 6y = 0,

which satisfies y(0) = 6 and y′(0) = 2.

Practical No. 7

Aim

To find the solution to a boundary value problem in MATLAB.

Problem

Find the solution to the boundary value problem in MATLAB

d2y

dx2
− y = 0,

which satisfies y(0) = 0 and y(1) = 1.

Theory

Theoretically, the above differential equation is solved by assuming a general solution of
the form c1e

m1x + c2e
m2x and then finding the respective derivatives and substituting them

in the differential equation. The boundary conditions are then used to find the particular
solution.

Algorithm

Step 1: Define the ODE using the inbuilt systems and diff function,
Step 2: Define the given boundary conditions,
Step 3: Use the inbuilt dsolve() to compute the solution of the ODE,
Step 4: Use the inbuilt disp function to display the output on the command window,
Step 5: Click on the Run button on the top panel.
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Program

% Define symbolic variable

syms y(x)

% Define the differential equation

ode = diff(y, x, 2) - y == 0;

% Define boundary conditions

cond1 = y(0) == 0;

cond2 = y(1) == 1;

% Combine conditions

conds = [cond1 cond2];

% Solve the boundary value problem

ysol(x) = dsolve(ode, conds);

% Simplify the solution

ysol = simplify(ysol);

% Display the solution of the boundary value problem

disp(‘The solution of the boundary value problem is:’);

disp(ysol(x));

Output

The solution of the boundary value problem is:

(exp(1 - x)*(exp(2*x) - 1))/(exp(2) - 1)

Exercise Problem

Find the solution to the boundary value problem in MATLAB

d2y

dx2
− 3

dy

dx
+ 2y = 0,

which satisfies y(0) = 0 and y(1) = 10.
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Practical No. 8

Aim

To find the solution to an initial value problem in MATLAB.

Problem

Find the general solution to the initial value problem in MATLAB

dy

dx
= −x

y
,

which satisfies y(3) = 4.

Theory

The above differential equation is solved theoretically by the method of separation of vari-
ables. The initial conditions are then used to find the particular solution.

Algorithm

Step 1: Define the ODE using the inbuilt systems and diff function,
Step 2: Define the given initial conditions,
Step 3: Use the inbuilt dsolve() to compute the solution of the ODE,
Step 4: Use the inbuilt disp function to display the output on the command window,
Step 5: Click on the Run button on the top panel.

Matlab Code

syms y(x)

Dy = diff(y);

ode = diff(y,x) == -(x/y);

cond = y(3) == 4;

ysol(x) = dsolve(ode,cond);

disp(‘The solution of the differential equation is:’);

disp(ysol(x));

Output

The solution of the differential equation is:

(25 - x^2)^(1/2)
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Exercise Problem

Find the general solution to the initial value problem in MATLAB

dy

dx
= 6x,

which satisfies y(1) = 8.

Practical No. 9

Aim

To find the solution of a nonlinear differential equation in MATLAB.

Problem

Find the solution of the nonlinear differential equation in MATLAB

dy

dx
+ y = 1.

Theory

The above differential equation is solved theoretically first taking square root on both sides
and then solving both linear differential equations independently. The initial conditions are
then used to find the solution for both equations.

Algorithm

Step 1: Define the ODE using the inbuilt systems and diff function,
Step 2: Define the given initial conditions,
Step 3: Use the inbuilt dsolve() to compute the solution of the ODE,
Step 4: Use the inbuilt disp function to display the output on the command window,
Step 5: Click on the Run button on the top panel.

MATLAB Code

syms y(x)

ode = (diff(y,x)+y)^2 == 1;

cond = y(0) == 0;
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ysol(x) = dsolve(ode,cond);

disp(‘The solution of the non-linear differential equation is:’);

disp(ysol(x));

Output

The solution of the non-linear differential equation is:

exp(-x) - 1

1 - exp(-x)

Exercise Problem

Find the solution of the nonlinear differential equation in MATLAB(
dy

dx

)2

+ 5y = 20

which satisfies y(0) = 0.

Practical No. 10

Aim

To find the solution of a differential equation in MATLAB.

Problem

Find the solution of the famous Airy equation in MATLAB

d2y

dx2
= xy.

Theory

The Airy function (or Airy function of the first kind) Ai(x) is a special function named after
the British astronomer George Biddell Airy. The function Ai(x) and the related function

Bi(x), are linearly independent solutions to the differential equation d2y
dx2 = xy known as

the Airy equation or the Stokes equation. The Airy equation is the simplest second-order
linear differential equation with a turning point.
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Algorithm

Step 1: Define the ODE using the inbuilt systems and diff function,
Step 2: Use the inbuilt dsolve() to compute the solution of the ODE,
Step 3: Use the inbuilt disp function to display the output on the command window,
Step 4: Click on the Run button on the top panel.

MATLAB Code

syms y(x)

ode = diff(y,x,2) == x*y;

ysol(x) = dsolve(ode);

disp(‘The solution of the Airy equation is:’);

disp(ysol(x));

Output

The solution of the Airy equation is:

C1*airy(0, -(x*(1 + 3^(1/2)*1i))/2) + C2*airy(2, -(x*(1 + 3^(1/2)*1i))/2)

More information about the inbuilt Airy function can be found by typing with the help
Airy command in the command window, as shown below.

Exercise Problem

Find the solution of the Airy-type equation in the MATLAB

d2y

dx2
= 4xy.

Practical No. 11

Aim

To find the Puiseux series solution in MATLAB.
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Problem

Find the Puiseux series solution for the given differential equation in MATLAB

(x2 + 1)
d2y

dx2
− 2x

dy

dx
+ y = 0,

which satisfies y′(0) = 1 and y(0) = 5.

Theory

Theoretically, the above differential equation is solved by assuming a general solution of
the form c1e

m1x + c2e
m2x and then finding the respective derivatives and substituting them

in the differential equation. The boundary conditions are then used to find the particular
series solution.

Algorithm

Step 1: Define the ODE using the inbuilt systems and diff function,
Step 2: Define the given initial conditions,
Step 3: Use the inbuilt dsolve() to compute the solution of the ODE,
Step 4: Use the inbuilt disp function to display the output on the command window,
Step 5: Click on the Run button on the top panel.

Program

syms y(x) a

ode = (x^2+1)*diff(y,x,2)-x*diff(y,x)+y == 0;

Dy = diff(y,x);

cond = [Dy(0) == 1; y(0) == 5];

ysol(x) = dsolve(ode,cond,‘ExpansionPoint’,0);

disp(‘The solution of the differential equation is:’);

disp(ysol(x));

Output

The solution of the differential equation is:

(5*x^4)/24 - (5*x^2)/2 + x + 5
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Exercise Problem

Find the series solution of the given differential equation in MATLAB

(x2 + 1)
d2y

dx2
− x

dy

dx
+ y = 0,

which satisfies y′(0) = 1 and y(0) = 5.

Practical No. 12

Aim

To check whether the differential equation is exact or not in MATLAB.

Problem

Check whether the given differential equation is exact or not in MATLAB

(3y + 4x2)dx+ (2x+ 3x2y)dy = 0.

Theory

A differential equation is of the form M(x, y)dx + N(x, y)dy = 0, where M and N have
continuous partial derivatives at all points in the domain D is said to be exact if ∂M

∂y
= ∂N

∂x
.

Algorithm

Step 1: Define the M and N functions,
Step 2: Use the if-else command to check whether the differential equation is exact or not,
Step 3: Use the inbuilt disp function to display the output on the command window,
Step 4: Click on the Run button on the top panel.

Program

syms x y c

% The general form of exact differential equation is P dx + Q dy =0

P = 3*y+4*x*x;

Q = 2*x+3*x*x*y;

if diff(P,y)==diff(Q,x)
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disp(‘‘Yes, the differential equation is exact’’);

else

disp(‘‘No, the differential equation is not exact’’);

end

Output

No, the differential equation is not exact

Exercise Problem

Check whether the given differential equation is exact or not in MATLAB

(3x2y2 + 4x3y3)dx+ (2x3y + 3x4y2)dy = 0.

Practical No. 13

Aim

To find the solution to an exact differential equation in MATLAB.

Problem

Find the general solution to the given exact differential equation in MATLAB (3x2 +
4xy)dx+ (2x2 + 2y)dy = 0.

Theory

A differential equation is of the form M(x, y)dx + N(x, y)dy = 0, where M and N have
continuous partial derivatives at all points in the domain D is said to be exact if ∂M

∂y
= ∂N

∂x
.

Algorithm

Step 1: Define M and N functions.
Step 2: Use the inbuilt int command to compute the integral of the function M with
respect to x and N with respect to y,
Step 3: Use the inbuilt disp function to display the output on the command window,
Step 4: Click on the Run button on the top panel.
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Program

syms x y

% The general form of exact differential equation is P dx + Q dy = 0

P = 3*x^3 + 4*x*y;

Q = 2*x^2*y + 2*y;

f = int(P, x) + subs(int(Q, y), x, 0) + c;

disp(‘The solution of the differential equation is:’);

disp(f);

Output

The solution of the exact differential equation is:

c + y^2 + x^2*(x + 2*y)

Exercise Problem

Find the general solution to the given exact differential equation in MATLAB

(2xy − sinx)dx+ (x2 − cosy)dy = 0.

Practical No. 14

Aim

Find the orthogonal trajectory in MATLAB.

Problem

Find the orthogonal trajectory of the family of parabolas y = cx2 in MATLAB.

Theory

An orthogonal trajectory refers to a family of curves that intersect another family of curves
at right angles.
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Algorithm

Step 1: Define the variables using the syms command and the given equation,
Step 2: Find the derivative of the given equation using the diff command,
Step 3: Eliminate the constants using the subs command,
Step 4: Define the negative reciprocal of the right-hand side of the differential equation
using the subs command,
Step 5: Use the inbuilt dsolve() to compute the solution of the obtained differential equa-
tion,
Step 6: Use the inbuilt disp function to display the output on the command window,
Step 7: Click on the Run button on the top panel.

Program

%Define the symbolic variables

syms x y(x) c

%Define the given equation whose orthogonal trajectory is to be computed

eq=y==c*x*x;

%find the differential equation

deq=diff(eq,x);

%Eliminate the constants ---This will vary according to question

deq1=subs(deq,c,(y/(x*x)));

f=rhs(deq1);

%Take negative recripocal of rhs

deq2=subs(deq1,f,-1/f);

%Finding the solution

sol=dsolve(deq2);

disp(‘The orthogonal trajectory to the family of parabolas is:’);

disp(sol);

Output

The orthogonal trajectory to the family of parabolas is:

(2^(1/2)*(- x^2 + C1)^(1/2))/2

-(2^(1/2)*(- x^2 + C1)^(1/2))/2

Exercise Problem

Find the orthogonal trajectory of the family of parabolas x2 + y2 = c2 in MATLAB.

Practical No. 15
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Aim

Find the general solution of an ODE using the method of variation of parameters in MAT-
LAB.

Problem

Find the general solution of the given ODE in MATLAB using the method of variation of
parameters

d2y

dx2
− y = 2x2 − x− 3.

Theory

The method of variation of parameters is to solve the inhomogeneous linear ordinary dif-
ferential equation.

Algorithm

Step 1: Define the variables using the syms command enter the coefficients of the second-
order differential equation,
Step 2: Solve for the roots of the Auxiliary equation using solve command,
Step 3: On the basis of the roots of the Auxiliary equation, define the complementary
function,
Step 4: Define the Wronskian,
Step 5: Define the general solution and particular integrals,
Step 6: Use the inbuilt disp function to display the output on the command window,
Step 7: Click on the Run button on the top panel.

Program

syms r c1 c2 x

E = input(‘Enter the coefficients of the 2nd ODE: ’);

X = input(‘Enter the R.H.S of the 2nd ODE: ’);

% Coefficients of the 2nd Order Differential Equations

a = E(1);

b = E(2);

c = E(3);

% Auxiliary Equation

AE = a*r^2 + b*r + c;
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s = solve(AE, r);

% Roots of Auxiliary Equation (AE)

r1 = s(1);

r2 = s(2);

% Determinant of Auxiliary Equation (AE)

D = b^2 - 4*a*c;

if D > 0

y1 = exp(r1*x);

y2 = exp(r2*x);

% Complementary Function

cf = c1*y1 + c2*y2;

elseif D == 0

y1 = exp(r1*x);

y2 = x*exp(r2*x);

% Complementary Function

cf = c1*y1 + c2*y2;

else

alpha = real(r1);

beta = imag(r2);

y1 = exp(alpha*x) * cos(beta*x);

y2 = exp(alpha*x) * sin(beta*x);

% Complementary Function

cf = c1*y1 + c2*y2;

end

% Wronskian Calculation

W = simplify(y1*diff(y2, x) - y2*diff(y1, x));

% Particular Integral

PI = simplify((-y1) * int(y2*X/W, x) + (y2) * int(y1*X/W, x));

% General Solution

GS = simplify(cf + PI);

Output

cf =

c_2 e^x + c_1 e^{-x}

PI =
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- 2x^2 + x - 1

GS =

x + c_2 e^x - 2x^2 + c_1 e^{-x} - 1

Exercise Problem

Find the general solution of the given ODE in MATLAB using the method of variation of
parameters

d2y

dx2
− 3

dy

dx
+ 2y = e3x.

Practical No. 16

Aim

To solve a second-order homogeneous differential equation in MATLAB.

Problem

Find the general solution of the given ODE in MATLAB

d2y

dx2
− 6

dy

dx
+ 5y = 0.

Theory

The second-order homogeneous differential equation is solved by defining the complemen-
tary functions on the basis of the roots of the Auxiliary equation.

Algorithm

Step 1: Define the variables using syms command enter the coefficients of the second order
differential equation,
Step 2: Solve for the roots of the Auxiliary equation using the solve command,
Step 3: On the basis of roots of the Auxiliary equation, define the general solution,
Step 4: Use the inbuilt disp function to display the output on the command window.
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Program

syms r c1 c2 n

F=input(‘Input the coefficients [a,b,c]: ’);

% Coefficients of the 2nd Order Difference Equation

a=F(1); b=F(2); c=F(3);

% Auxiliary Equation Formed

eq=a*(r^2)+b*(r)+c;

S=solve(eq);

% Roots of the Auxiliary Equation Formed

r1=S(1); r2=S(2);

% Determinant of the Auxiliary Equation Formed

D=b^2-4*a*c;

if D>0

y1=exp(r1*n);

y2=exp(r2*n);

yn=c1*y1+c2*y2;

elseif D==0

y1=exp(r1*n);

y2=n*exp(r2*n);

yn=c1*y1+c2*y2;

else

alpha=real(r1);

beta=imag(r2);

y1=exp(alpha*n)*cos(beta*n);

y2=exp(alpha*n)*sin(beta*n);

yn=c1*y1+c2*y2;

end

disp(‘The solution of the difference equation is yn=’)

disp(yn)

Output

Input the coefficients [a,b,c]: [1,-6,5]

The solution of the difference equation is yn=

c1*exp(n) + c2*exp(5*n)
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Exercise Problem

Find the general solution of the given ODE in MATLAB

d2y

dx2
− 8

dy

dx
+ 16y = 0.

Practical No. 17

Aim

Plot the Bessel function in MATLAB.

Problem

Plot the Bessel function of the first kind in MATLAB.

Theory

The Bessel functions of the first kind Jn(x) are defined as the solutions to Bessel differential

equation x2 d2y
dx2 + x dy

dx
+ (x2 − n2)y = 0 which are nonsingular at the origin.

Algorithm

Step 1: Define the grids on the x-axis,
Step 2: Use the inbuilt Bessel command to compute the Bessel solution,
Step 3: Use the inbuilt plot function to plot the Bessel solution,
Step 4: Click on the Run button on the top panel.

Program

% Bessel Function of the First Kind

x = 0:0.1:10;

J0 = besselj(0, x);

plot(x, J0);

title(‘Bessel Function of the First Kind J_0(x)’);

xlabel(‘x’);

ylabel(‘J_0(x)’);

grid on;
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Output

Exercise Problem

Plot the Bessel solution Jn(x) for n = 2, 3, 4, 5.

Practical No. 18

Aim

Plot the Legendre polynomial in MATLAB.

Problem

Plot the Legendre polynomial of the first kind in MATLAB.

Theory

The Legendre polynomials are solutions to the Legendre differential equation.

Algorithm

Step 1: Define the grids on the x-axis,
Step 2: Use the inbuilt Legendre command to compute the Legendre polynomial,
Step 3: Use the inbuilt plot function to plot the Legendre polynomial,
Step 4: Click on the Run button on the top panel.

Program

% Legendre Polynomials

x = linspace(-1, 1, 100);

P5 = legendreP(5, x);

plot(x, P5);

title(‘Legendre Polynomial P_5(x)’);

xlabel(‘x’);

ylabel(‘P_5(x)’);

grid on;
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Output

Exercise Problem

Plot the Legendre function of the second kind in MATLAB.

Practical No. 19

Aim

Solve a system of ordinary simultaneous differential equations in MATLAB.

Problem

Solve the given system of simultaneous ordinary differential equations in MATLAB.

dx

dt
− y = −x, dy

dt
− x = −y.

Theory

Linear differential equations having two or more dependent variables with a single indepen-
dent variable are called simultaneous differential equations.

Algorithm

Step 1: Define two ODEs using the inbuilt systems and diff function,
Step 2: Use the inbuilt dsolve() to compute the solution of the simultaneous ODEs,
Step 3: Extract the different solutions from the common solution using command,
Step 4: Use the inbuilt disp function to display the output on the command window,
Step 5: Click on the Run button on the top panel.

Program

syms x(t) y(t)

ode1 = diff(x) == y - x;

ode2 = diff(y) == x - y;

odes = [ode1; ode2];

S = dsolve(odes);

xsol(t) = S.x;
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ysol(t) = S.y;

disp(‘The solution of the system of differential equation is ’)

disp(‘x(t)=’);

disp(xsol(t));

disp(‘y(t)=’);

disp(ysol(t));

Output

The solution of the system of differential equations is:

x(t) = C_{1} - C_{2} e^{- 2 t}

y(t) = C_{1} + C_{2} e^{- 2 t}

Exercise Problem

Solve the given system of simultaneous ordinary differential equations in MATLAB

dx

dt
+ y = et,

dy

dt
− x = e−t.

Practical No. 20

Aim

To find the series solution of a second-order differential equation (ODE) in MATLAB.

Problem

Find the series solution of the second-order differential equation in MATLAB

(x2 − 1)2
d2y

dx2
+ (x+ 1)

dy

dx
− y = 0.

Theory

For finding the series solution to a differential equation, we assume a solution as a power
series in the form y(x) =

∑∞
n=0 an(x−x0)n around the ordinary point x = x0 and determine

the coefficients an.
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Algorithm

Step 1: Define the ODE using the inbuilt systems and diff function,
Step 2: Use the inbuilt dsolve() along with the Expansion point command to find the series
solution,
Step 3: Use the inbuilt disp function to display the output on the command window,
Step 4: Click on the Run button on the top panel.

Program

syms y(x)

eqn = (x^2 - 1)^2 * diff(y,2) + (x + 1) * diff(y) - y == 0;

S1 = dsolve(eqn, ‘ExpansionPoint’, -1);

disp(‘The series solution of the differential equation is ’)

disp(S1);

Output

The series solution of the differential equation is

(x + 1)*(1/4) - (5*(x + 1)^3*(3/4))/4 + (5*(x + 1)^5*(7/48))/48

+ (5*(x + 1)^7*(11/49))/336 - (115*(x + 1)^9*(15/49))/33792

+ (169*(x + 1)^11*(19/49))/118432 ...

Exercise Problem

Find the other series solution around the point ∞ of the second-order differential equation
in MATLAB

(x2 − 1)2
d2y

dx2
+ (x+ 1)

dy

dx
− y = 0.

Practical No. 21

Aim

To define and find the product of three vectors in MATLAB.
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Problem

Find the product of the following vectors in MATLAB24
8

 ,
35
6

 and

−1
4
0

 .
Theory

Vector multiplication means each entry of a vector is multiplied element-wise with the
corresponding entry in the other vector.

Algorithm

Step 1: Define the vectors as an array,
Step 2: Use .* to do element-wise multiplication in MATLAB,
Step 3: Use the inbuilt disp function to display the output on the command window,
Step 4: Click on the Run button on the top panel.

Program

%Defining the vectors

x=[2 4 8]’;

y=[3 5 6]’;

z=[-1 4 0]’;

% ’ indicates transpose. If ’ is not used then we will get a row vector

p = x .* y .* z; %--product of three vectors

disp(‘‘The product of vectors x, y and z is")

disp(p)

Output

The product of vectors x, y and z is

-6

80

0
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Exercise Problem

Find the product of the following vectors in MATLAB 1
−1
2

 ,
20
4

 ,
−2

1
9

 and

24
6

 .
Practical No. 22

Aim

To ask the user for vectors and find their product in MATLA.

Problem

Write a MATLAB code to ask the user for three different vectors and find the product of
these vectors.

Theory

Vector multiplication means each entry of a vector is multiplied element-wise with the
corresponding entry in the other vector.

Algorithm

Step 1: Use different vectors,
Step 2: Use .* to do element-wise multiplication in MATLAB,
Step 3: Use the inbuilt disp function to display the output on the command window,
Step 4: Click on the Run button on the top panel.
Step 5: Define the vectors as input an array. Press enter after providing the value of each
vector.

Program

%Asking users for vectors

x = input(‘‘Enter the vector x’’);

disp(x);

y = input(‘‘Enter the vector y’’);

disp(y);
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z = input(‘‘Enter the vector z’’);

disp(z);

p = x .* y .* z;

disp(‘‘The product of vectors x, y and z is’’);

disp(p);

Output

Enter the vector x [9 8 1 -1]’

9

8

1

-1

Enter the vector y [2 9 -7 8]’

2

9

-7

8

Enter the vector z [8 -11 -1 1]’

8

-11

-1

1

The product of vectors x, y and z is

144

-792

7

-8

Exercise Problem

Write a MATLAB code to ask the user for five different vectors and then find the product
of these vectors.

Practical No. 23
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Aim

To ask the user for vectors and find the vector product of these vectors in MATLAB.

Problem

Write a MATLAB code to ask the user for three different vectors and then find the vector
product of these vectors.

Theory

Vector product for any three vectors a = (a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3) is given
by (a× (b× c)) = (a.c)b− (a.b)c

Algorithm

Step 1: Use the inbuilt input command to ask the user for three different vectors x,y and
z,
Step 2: Use the inbuilt cross command to find the cross product of y and z,
Step 3: Use the cross command again to find the cross product between x and the new
vector obtained from Step 2,
Step 4: Use the inbuilt disp function to display the output on the command window,
Step 5: Click on the Run button on the top panel.
Step 6: Define the vectors as input an array.

Program

x = input(‘‘Enter the vector x’’);

disp(x);

y = input(‘‘Enter the vector y’’);

disp(y);

z = input(‘‘Enter the vector z’’);

disp(z);

p = cross(y, z);

q = cross(x, p);

disp(‘‘The vector product of x, y and z is’’);

disp(q);
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Output

Enter the vector x [3 -1 2]’

3

-1

2

Enter the vector y [2 1 -1]’

2

1

-1

Enter the vector z [1 -2 2]’

1

-2

2

The vector product of x, y and z is

15

15

-15

Exercise Problem

Write a MATLAB code for a scalar a and vectors x and y and then compute the value of
a.(x× y).
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Chapter 5

Group Theory

Practical No. 1

Aim

To solve the given problem with the help of PYTHON.

Problem

Write a program which takes input of two integers a and d, where d is a positive integer.
Apply division algorithm and calculate quotient q and remainder r when a is divided by d.
Print the result. Run the program for (a, d) = (−41, 6), (253, 17), (24139, 12).

Theory

According to division algorithm if we divide an integer a by a positive integer d, then we
get unique integers q and 0 ≤ r < d such that

a = qd+ r.

Algorithm

Step1: Prompt user to give input of integer a;
Step2: Prompt user to give input of integer d;
Step3: Verify if d is a positive integer. If d is not a positive integer, inform user and exit
program;
Step4: Define and calculate q;
Step5: Define and calculate r;
Step6: Print q and r.

173



Group Theory Practical No. 2

Program

#Step 1

a = int(input(‘a = ’))

#Step 2

d = int(input(‘d = ’))

#Step 3

if d < 1:

raise ValueError(‘d must be a positive integer’)

#Step 4

q = a//d

#Step 5

r = a%d

#Step 6

print(f‘{a} = ({q}){d} + {r} so that q = {q}, r = {r}.’)

Output

The output of the program for various inputs is as following:

Exercise Problem

Write a program which takes an integer n as input from the user and prints if n is even or
odd. Run the program for n = −51, 0, 25, 203541.

Practical No. 2
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Aim

To solve the given problem with the help of PYTHON.

Problem

Write a program which takes input of two integers a and b from user. Then program prints
the maximum of a and b. Run the program (a, b) = (5,−8), (12, 12), (11, 100).

Theory

Let a and b be two integers.Then maximum of a and b,max(a, b) is given by

max(a, b) = f(x) =

{
a, a > b

b, otherwise.

Algorithm

Step1: Prompt user to give input of integers a and b;
Step2: Define an integer variable m for maximum;
Step3: If a > b then set m = a;
Step4: Otherwise set m = b;
Step5: Print value of maximum.

Program

The following PYTHON script implements the algorithm.

#Step 1

a = int(input(’a = ’))

b = int(input(’b = ’))

#Step 2

m = 0

#Step 3

if a > b:

m = a

#Step 4

else:

m = b

#Step 5

print(f’max({a}, {b}) = {m}.’)
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Output

The output of the program for various inputs is as following:

Exercise Problem

Write a program which takes input of two integers a and b from user. Then program prints
the minimum of a and b. Run the program for (a, b) = (5,−8), (12, 12), (11, 100).

Practical No. 3

Aim

To solve the given problem with the help of PYTHON.

Problem

Write a program which takes input of two positive integers a and b from user. The
program calculates and prints the GCD of a and b. Run the program for (a, b) =
(21, 18), (30, 14), (105, 80).
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Theory

The GCD of two positive integers a and b is defined as the least of all the positive common
divisors of a and b. It can be found using Euclidean algorithm.

Algorithm

Step1: Prompt user to give input of integers a and b;
Step2: Check if a and b are positive integers. If not, show error and exit;
Step3: Define and calculate M = max(a, b);
Step4: Define and calculate m = min(a, b);
Step5: Run a loop while M mod m is non-zero;
Step6: At each iteration, set M to m and m to M mod m;
Step7: Define and set gcd to m;
Step8: Print the value of GCD(a, b).

Program

The following PYTHON script implements the algorithm.

#Step 1

a = int(input(’a = ’))

b = int(input(’b = ’))

#Step 2

if a < 1 or b < 1:

raise ValueError(’a and b must be a positive integers.’)

#Step 3

m = min(a, b)

#Step 4

M = max(a, b)

#Step 5

while M%m != 0:

#Step 6

r = M%m

M = m

m = r

#Step 7

gcd = m

#Step 8

print(f’GCD({a}, {b}) = {gcd}’)
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Output

The output of the program for various inputs is as following:
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Exercise Problem

Write a program which takes input of two positive integers a and b from user. The
program calculates and prints the LCM of a and b. Run the program for (a, b) =
(12, 18), (10, 48), (7, 56).

Practical No. 4

Aim

To solve the given problem with the help of PYTHON.

Problem

Write a program which takes input of a positive integer a ≥ 2 and prints if it is a prime or
composite number. Run the program for a = 2, 8, 101, 67777.

Theory

An integer is called a prime if its only positive divisors are 1 and itself. We can search the
divisors of given integer a between 1 and a. If we find a divisor between 1 and a, then it is
composite and otherwise it is prime.
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Algorithm

Step1: Prompt user to give input of integers a;
Step2: Check if a is a positive integer greater than 1. If not, show error and exit;
Step3: Define a Boolean variable composite and set it to false;
Step4: Run a loop from d = 2 to d = a− 1.It should not run any iteration if a = 2;
Step5: Check if d divides a.If d | a, then set composite to true and exit the loop;
Step6: Print the result.

Program

The following PYTHON script implements the algorithm.

#Step 1

a = int(input(’a = ’))

#Step 2

if a < 2:

raise ValueError(’a must be an integer greater than 1.’)

#Step 3

composite = False

#Step 4

for d in range(2, a - 1):

#Step 5

if a%d == 0:

composite = True

#Step 6

if composite:

print(f’{a} is a composite number.’)

else:

print(f’{a} is a prime number.’)

Output

The output of the program for various inputs is as following:

Exercise Problem

Write a program which takes input of a positive integer a and prints the number of prime
integers less than or equal to a. Run the program for a = 10, 100, 1000, 10000.

Practical No. 5
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Aim

To solve the given problem with the help of PYTHON.

Problem

Write a program which takes input of a positive integer a and prints a list of its positive
divisors. Run the program for a = 6, 15, 28, 80.

Theory

A positive integer d is said to be divisor of an integer a if the remainder upon diving a by
d vanishes.

Algorithm

Step1: Prompt user to give input of integer a;
Step2: Check if a is a positive integer. If not, show error and exit;
Step3: Define a list divisors;
Step4: Run a loop from d = 1 to d = a;
Step5: Check if d divides a.If d | a,then set add d to the list divisors;
Step6: Print the list divisors.

Program

The following PYTHON script implements the algorithm.

#Step 1
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a = int(input(’a = ’))

#Step 2

if a < 1:

raise ValueError(’a must be a positive integer.’)

#Step 3

divisors = []

#Step 4

for d in range(1, a + 1):

#Step 5

if a%d == 0:

divisors.append(d)

#Step 6

print(f’The list of divisors of {a} is: {divisors}.’)

Output

The output of the program for various inputs is as following:

Exercise Problem

Write a program which takes input of a positive integer a and prints if it is a perfect
number.A positive integer a is said to be perfect if it is equal to the sum of all its divisors
less than a.Run the program for a = 6, 15, 28, 80.

Practical No. 6
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Aim

To solve the given problem with the help of PYTHON.

Problem

Write a program which takes input of a positive integer n and prints the number of positive
integers d ≤ n which are co-prime to n. Run the program for n = 1, 10, 12, 60.

Theory

Two positive integers a and b are said to be co-prime if GCD(a, b) = 1. The Eulers totient
function ϕ(n) for positive integer n is defined as the number of co-prime positive integers
less than or equal to n.

Algorithm

Step1: Prompt user to give input of integer n;
Step2: Check if n is a positive integer.If not, show error and exit;
Step3: Define variable phi n for ϕ(n) and set it to zero;
Step4: Run a loop from d = 1 to d = n;
Step5: At each iteration, if GCD(d, n) = 1,increase phi n by 1;
Step6: Print the value of ϕ(n).

Program

The following PYTHON script implements the algorithm.

#Function to calculate GCD of two positive integers

def gcd(a, b):

m = min(a, b)

M = max(a, b)

while M%m != 0:

m, M = M%m, m

return m

#Step 1

n = int(input(’n = ’))

#Step 2

if n < 1:

raise ValueError(’n must be a positive integer.’)

#Step 3
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phi_n = 0

#Step 4

for d in range(1, n + 1):

#Step 5

if gcd(d, n) == 1:

phi_n += 1

#Step 6

print(f’The number of coprime positive integers <= {n} is\nphi({n}) = {phi_n}.’)

Output

The output of the program for various inputs is as following:

Exercise Problem

Write a program which takes input of two positive integers a and b and prints if they are
co-prime or not. Run the program for (a, b) = (1, 1), (15, 24), (90, 143).

Practical No. 7
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Aim

To solve the given problem with the help of PYTHON.

Problem

Write a program which takes input of a positive integer n > 1 and prints all its positive
prime factors. Run the program for a = 20, 104, 2985, 24781.

Theory

An integer greater than 1 is said to be prime if its only divisors are 1 and itself.An integer
is said to be factor of another integer if earlier is a divisor of the later.

Algorithm

Step1: Prompt user to give input of integer n;
Step2: Check if n is a positive integer greater than 1. If not,show error and exit;
Step3: Define a list PrimeFactors to save prime factors of n;
Step4: Define q = n and define p = 2;
Step5: Run a loop till q is not 1;
Step6: At each iteration,if p | q,then add p to list primefactors;
Step7: Run another loop till p | q;
Step8: At each iteration of inner loop, set q to q/p;
Step9: Exit inner loop and set p to next prime;
Step10: Exit outer loop;
Step11: Print the list of prime factors.

Program

The following PYTHON script implements the algorithm.

#Function to check the primality of an integer greater than 1

def isprime(n):

for d in range(2, int(n**0.5) + 1):

if n % d == 0:

return False

return True

#Function to calculate next prime integer after n

def nextprime(n):

while True:
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n += 1

if isprime(n):

return n

#Step 1

n = int(input(’n = ’))

#Step 2

if n < 2:

raise ValueError(’n must be a positive integer greater than 1.’)

#Step 3

primeFactors = []

#Step 4

q = n

p = 2

#Step 5

while q != 1:

#Step 6

if q%p == 0:

primeFactors.append(p)

#Step 7

while q%p == 0:

#Step 8

q = q/p

#Step 9

p = nextprime(p)

#Step 11

print(f’Prime factors of {n} are = {primeFactors}.’)

Output

The output of the program for various inputs is as following:

Exercise Problem

Write a program which takes input of a positive integer n > 1 and prints its prime
factorization according to the Fundamental Theorem of Arithmetic.Run the program for
a = 30, 52, 100, 686, 2024.

Practical No. 8

Aim

To solve the given problem with the help of PYTHON.
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Problem

Write a program which takes input of a positive integer n. Then, it prints order and all the
elements of the group Zn. Run the program for n = 1, 2, 10, 24.

Theory

Zn, n > 0 is the group of integers addition modulo n:

Zn = {k : kϵz, 0 ≤ k < n}

.

Algorithm

Step1: Prompt user to give input of integer n;
Step2: Check if n is a positive integer. If not, show error and exit;
Step3: Define a list zn to save elements Zn;
Step4: Add elements of Zn to zn;
Step5: Print order of Zn and elements of Zn.

Program

The following PYTHON script implements the algorithm.

#Step 1

n = int(input(’n = ’))
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#Step 2

if n < 1:

raise ValueError(’n must be a positive integer.’)

#Step 3 & 4

zn = list(range(0, n))

#Step 5

print(f’|Z{n}| = {len(zn)}.’)

print(f’Z{n} = {zn}.’)

Output

The output of the program for various inputs is as following:

Exercise Problem

Write a program which takes input of a positive integer n. Then, it prints the inverse of
each of the elements of the group Zn. Run the program for n = 1, 2, 10, 24.

Practical No. 9
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Aim

To solve the given problem with the help of PYTHON.

Problem

Write a program which takes input of an integer n > 1. Then it prints the order and all
the elements of U(n). Run the program for n = 12, 15, 30, 36.

Theory

For natural number n > 1,U(n) is the group of positive integers k < n, such that gcd(k, n) =
1. The group U(n) is also called the group of units in Zn.

Algorithm

Step1: Prompt user to give input of integer n;
Step2: Check if n is a positive integer. If not, show error and exit;
Step3: Define a list un to save elements U(n);
Step4: Run a loop from k = 1 to k = n− 1;
Step5: In each iteration, if gcd(k, n) = 1, then include k in the list un;
Step6: End loop;
Step7: Print the order and elements of U(n).

Program

The following PYTHON script implements the algorithm.

#Function to calculate GCD of two positive integers

def gcd(a, b):

m = min(a, b)

M = max(a, b)

while M%m != 0:

m, M = M%m, m

return m

#Step 1

n = int(input(’n = ’))

#Step 2

if n <= 1:

raise ValueError(’n must be a positive integer greater than 1.’)

#Step 3
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un = []

#Step 4

for k in range(1, n):

#Step 5

if gcd(k, n) == 1:

un.append(k)

#Step 7

print(f’|U{n}| = {len(un)}.’)

print(f’U{n} = {un}.’)

Output

The output of the program for various inputs is as following:

Exercise Problem

Write a program which takes input of an integer n > 1. Then, it prints the inverse of each
of the elements of U(n). Run the program for n = 12, 15, 30, 36.

Practical No. 10
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Aim

To solve the given problem with the help of PYTHON.

Problem

Write a program which takes input of an integer n > 1. Then it prints the order of each of
the elements of U(n). Run the program for n = 10, 12, 15, 30.

Theory

The inverse for a ∈ U(n) is b ∈ U(n) such that ab mod n = 1.

Algorithm

Step1: Prompt user to give input of integer n;
Step2: Check if n is a positive integer. If not, show error and exit;
Step3: Define a list un and save elements U(n) in it;
Step4: Define a list orders to save element and order pair;
Step5: Run a loop for each k in U(n);
Step6: Define u = 1 and order = 0;
Step7: Run an inner loop;
Step8: At each iteration, set u to uk mod n and order to order + 1;
Step9: If u = 1, exit loop;
Step10: Save element and its order as a pair to the list orders and Exit outer loop;
Step11: Print the order of elements of U(n).

Program

The following PYTHON script implements the algorithm.

#Function to calculate GCD of two positive integers

def gcd(a, b):

m = min(a, b)

M = max(a, b)

while M%m != 0:

m, M = M%m, m

return m

#Step 1

n = int(input(’n = ’))

#Step 2

if n <= 1:
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raise ValueError(’n must be a positive integer greater than 1.’)

#Step 3

un = []

for k in range(1, n):

if gcd(k, n) == 1:

un.append(k)

#Step 4

orders = []

#Step 5

for k in un:

#Step 6

u = 1

order = 0

#Step 7

while True:

#Step 8

u = u*k%n

order += 1

#Step 9

if u == 1:

break

#Step 10

orders.append((k, order))

#Step 11

for element, order in orders:

print(f’|{element}| = {order}’)

Output

The output of the program for various inputs is as following:
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Exercise Problem

Write a program which takes input of a positive integer n. Then it prints the order of each
of the elements of Zn. Run the program for n = 2, 5, 12, 18.

Practical No. 11

Aim

To solve the given problem with the help of PYTHON.

Problem

Write a program which takes input of a 22 matrix M with integer entries and prints the

determinant of M .Run the program for M =

[
1 −5
3 8

]
,

[
−3 2
6 −4

]
.

Theory

The determinant |M | of a 2× 2 matrix M =

[
a b
c d

]
is given by

|M |= ad− bc

.

Algorithm

Step1: Step 1: Prompt user to give input of matrix M =

[
a b
c d

]
;

Step2: Verify if M is a 2× 2 matrix having integer entries. If verification fails, show error
and exit;
Step3: Define det =|M | and set it to ad− bc;
Step4: Print the value of |M |.

Program

The following PYTHON script implements the algorithm.

193



Group Theory Practical No. 12

#Package for numerical computations

import numpy as np

#Step 1

M = np.matrix(input(’Enter the matrix in the format a, b; c, d\nM = ’), int)

#Step 2

rows, columns = M.shape

if rows != 2 or columns != 2:

raise IndexError(’M is not a 2x2 matrix.’)

#Step 3

det = M[0, 0]*M[1, 1] - M[0, 1]*M[1, 0]

#Step 4

print(f’|M| = {det}.’)

Output

The output of the program for various inputs is as following:

Exercise Problem

Write a program which takes input of a 2× 2 matrix M with integer entries and a positive

integer n. Then,it prints the matrix Mn. Run the program for M =

[
1 0
0 1

]
,

[
−1 1
2 5

]
with

n = 10.

Practical No. 12

Aim

To solve the given problem with the help of PYTHON.
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Problem

Write a program that takes input of a nonempty set of integers Sand a positive integer r.
It, then, finds all the possible permutations with repetitions of size r of elements of the
given set. Finally, it prints the number of permutations and all the permutations to the
user. Run the program for S = {0, 1, 2} and r = 4.

Theory

Given a set of objects S with n elements, a permutation of size rof objects of S is an
arrangement of objects in a definite order. If repetitions are allowed, then

no. of possible permutations = rn.
Whereas, if n ≥ r and repetitions are not allowed, then

no. of possible permutations =
(
n
k

)
= n!

(n−r)!
.

Algorithm

Step 1: Prompt user to give input of set S;
Step 2: Verify that S is a nonempty set of integers free from duplicates;
Step 3: If verification fails, show an error and exit;
Step 4: Prompt user to give input of r;
Step 5: Verify if r is a positive integer. If verification fails, show an error and exit;
Step 6: Define the list of permutations and add an empty permutation to it;
Step 7: Run a loop for r iterations;
Step 8: At each iteration, define a temporary list of permutations;
Step 9: Run a loop for each permutation in the list of permutations;
Step 10: At each iteration, run a loop for each element in S;
Step 11: At each iteration, add the element of this iteration to the permutation of this
iteration at the end and append it to the temporary list of permutations;
Step 12: Exit two inner loops;
Step 13: Set list of permutations to temporary list of permutations and exit loop;
Step 14: Print the total number of permutations and all the permutations.

Program

The following PYTHON script implements the algorithm.

#Step 1

S = input(‘Enter the set as 0, 1, 2, ...\nS = ’)

S = S.strip().split(‘,’)

#Step 2 & 3

if len(S) == 0:

raise IndexError(‘S must be nonempty.’)
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S = list(map(int, S))

if len(S) != len(set(S)):

raise ValueError(‘S has duplicate elements.’)

#Step 4

r = int(input(‘r = ’))

#Step 5

if r <= 0:

raise ValueError(‘r should be a positive integer.’)

#Step 6

permutations = [[]]

#Step 7

for _ in range(r):

#Step 8

temp_permutations = []

#Step 9

for perm in permutations:

#Step 10

for element in S:

#Step 11

temp_permutations.append(perm + [element])

#Step 13

permutations = temp_permutations

#Step 14

print(f‘Total number of permutations = {len(permutations)}.’)

print(f‘The permutations of size {r} with repetitions of set S = {S} are

as following:\n{permutations}’)

Output

The output of the program for various inputs is as following:

Exercise Problem

Write a program that takes input of a nonempty set of integers S and a positive integer r.
It, then, finds all the possible permutations without repetitions of size r of elements of the
given set. Finally, it prints the number of permutations and all the permutations to the
user. Run the program for S = {0, 1, 2, 3, 4, 5, 6} and r = 4.

Practical No. 13
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Aim

To solve the given problem with the help of PYTHON.

Problem

Write a program that takes the input of a prime number p < 10 from the user and prints
the order and the elements of the group GL(2, Zp). Run the program for p = 3.

Theory

The group GL(n, F ) is the group of nn non-singular matrices with matrix multiplication
as binary operation over field F. The addition and multiplication of elements of matrices
are done as defined in the field F. So GL(2, Zp) is the group of 22 non-singular matrices
over Zp. The arithmetic operations are done modulo p for the elements in these matrices.
A square matrix M is said to be non-singular if

det(M) ̸= 0.

Since, in the field Zp, we have np = 0 mod p, so MϵGL(2, Zp) is non-singular if

det(M) ̸= np,

n being an integer.
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Algorithm

Step 1: Prompt user to give input of p;
Step 2: Verify if p is a prime. If verification fails, show an error and exit;
Step 3: Define a list of permutations with repetitions of integers in Zp of size 4;
Step 4: Define a list gl of elements of GL(2, Zp);
Step 5: Run a loop for each permutation in the list of permutations;
Step 6: At each iteration, reshape the permutation as a 22 matrix M ;
Step 7: Calculate the determinant of M in modulo arithmetic;
Step 8: If the determinant of M is non-zero, then append M to the list gl;
Step 9: Exit loop;
Step 10: Print the order and elements of GL(2, Zp).

Program

The following PYTHON script implements the algorithm.

import numpy as np

#Function to check primality of an integer greater than 1

def isprime(n):

for d in range(2, int(n**0.5) + 1):

if n % d == 0:

return False

return True

#Function to calculate all permutations with repetitions of given size

def perm(s, r):

permutations = [[]]

for _ in range(r):

temp_permutations = []

for permutation in permutations:

for element in s:

temp_permutations.append(permutation + [element])

permutations = temp_permutations

return permutations

#Function to calculate determinant of 2x2 matrices

def det(m):

return m[0, 0]*m[1, 1] - m[0, 1]*m[1, 0]

#Step 1

p = int(input(‘p = ’))

#Step 2
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if p <= 1 or not isprime(p):

raise ValueError(‘p should be a prime number.’)

#Step 3

permutations = perm(list(range(0, p)), 2*2)

#Step 4

gl = []

#Step 5

for permutation in permutations:

#Step 6

m = np.matrix(np.reshape(permutation, (2, 2)))

#Step 7

d = det(m)%p

#Step 8

if d!= 0:

gl.append(m)

#Step 10

print(f‘|GL(2, Z{p})| = {len(gl)}.’)

print(f‘GL(2, Z{p}) = {{’, end=’’)

for m in gl:

print(f‘[{m[0, 0]}, {m[0, 1]}; {m[1, 0]}, {m[1, 1]}], ‘, end=’’)

print(’}’)

Output

The output of the program for the given input is as follows:

Exercise Problem

Write a program that takes the input of a prime number p < 10 from the user and prints
the order and the elements of the group SL(2, Zp). Run the program for p = 3.

Practical No. 14
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Aim

To solve the given problem with the help of PYTHON.

Problem

Write a program that takes the input of a prime number p < 10 from the user and prints
the order of each element in the group GL(2, Zp). Run the program for p = 2.

Theory

The order of matrix M in the group GL(n, F ) is least positive integer m such that

Mn mod p =

[
1 0
0 1

]
.

Algorithm

Step 1: Prompt user to give input of p;
Step 2: Verify if p is a prime. If verification fails, show an error and exit;
Step 3: Define a list gl of elements of GL(2, Zp);
Step 4: Define a list order to save a pair of the elements and their orders;
Step 5: Run a loop for each element M in GL(2, Zp);

Step 6: At each iteration, define U =

[
1 0
0 1

]
. and order = 0;

Step 7: Run an inner loop;
Step 8: At each iteration, set U to UM mod p and order to order+1;

Step 9: If U =

[
1 0
0 1

]
, save (element, order) pair to the list orders, and exit the inner

loop;
Step 10: Exit outer loop;
Step 11: Print the order of elements of GL(2, Zp).

Program

The following PYTHON script implements the algorithm.

import numpy as np

#Function to check primality of an integer greater than 1

def isprime(n):

for d in range(2, int(n**0.5) + 1):

if n % d == 0:
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return False

return True

#Function to calculate all permutations with repetitions of given size

def perm(s, r):

permutations = [[]]

for _ in range(r):

temp_permutations = []

for permutation in permutations:

for element in s:

temp_permutations.append(permutation + [element])

permutations = temp_permutations

return permutations

#Function to calculate determinant of 2x2 matrices

def det(m):

return m[0, 0]*m[1, 1] - m[0, 1]*m[1, 0]

#Step 1

p = int(input(‘p = ’))

#Step 2

if p <= 1 or not isprime(p):

raise ValueError(‘p should be a prime number.’)

#Step 3

permutations = perm(list(range(0, p)), 2*2)

gl = []

for permutation in permutations:

m = np.matrix(np.reshape(permutation, (2, 2)))

d = det(m)%p

if d != 0:

gl.append(m)

#Step 4

orders = []

I = np.matrix(’1, 0; 0, 1’)

#Step 5

for M in gl:

#Step 6

U = np.matrix(np.copy(I))

order = 0

#Step 7

while True:

#Step 8

U = U*M %p

order += 1

#Step 9
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if (U==I).all():

orders.append((M, order))

break

#Step 11

for M, order in orders:

print(f‘|[{M[0, 0]}, {M[0, 1]}; {M[1, 0]}, {M[1, 1]}]| = {order}’)

Output

The output of the program for the given input is as follows:

Exercise Problem

Write a program that takes the input of a prime number p < 10 from the user and prints
the order and the elements of the group SL(2, Zp). Run the program for p = 3.

Practical No. 15

Aim

To solve the given problem with the help of PYTHON.

Problem

Write a program that takes the input of a positive integer n. Then it prints the inverse of
each of the elements of Zn. Run the program for n = 2, 5, 12, 18.

Theory

The inverse of kϵZn is mϵZn such that (k +m) mod n = 0.
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Algorithm

Step 1: Prompt user to give input of integer n;
Step 2: Check if n is a positive integer. If not, show an error and exit;
Step 3: Define a list zn and save elements Zn in it;
Step 4: Define a list inverses to save element and inverse pair;
Step 5: Run a loop for each k in Zn;
Step 6: Run an inner loop for each m in Zn;
Step 7: At each iteration, if (k + m) mod n = 0, save the element and its inverse as a
pair to the list inverses and exit the inner loop;
Step 8: Exit the outer loop;
Step 9: Print the inverses of elements of Zn.
.

Program

The following PYTHON script implements the algorithm.

#Step 1

n = int(input(’n = ’))

#Step 2

if n <= 0:

raise ValueError(‘n must be a positive integer.’)

#Step 3

zn = list(range(n))

#Step 4

inverses = []

#Step 5

for k in zn:

#Step 6

for m in zn:

#Step 7

if (k+m)%n == 0:

inverses.append((k, m))

break

#Step 9

for element, inverse in inverses:

print(f‘-{element} = {inverse}’)

Output

The output of the program for the given input is as follows:
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Exercise Problem

Write a program that takes the input of an integer n > 1. Then it prints the inverse of
each of the elements of U(n). Run the program for n = 10, 12, 15, 30.

Practical No. 16

Aim

To solve the given problem with the help of PYTHON.

Problem

Write a program that takes the input of a prime number p < 10 from the user and prints
the inverse of each element in the group GL(2, Zp). Run the program for p = 2.

Theory

The inverse of matrix M in the group GL(n, F ) is the matrix N such that

MN mod p =

[
1 0
0 1

]
.
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Algorithm

Step 1: Prompt user to give input of p;
Step 2: Verify if p is a prime. If verification fails, show an error and exit;
Step 3: Define a list gl of elements of GL(2, Zp);
Step 4: Define a list inverse to save a pair of the elements and their inverses;
Step 5: Run a loop for each element M in GL(2, Zp);
Step 6: At each iteration, Run another loop for each element N in GL(2, Zp);
Step 7: At each iteration, if

MN mod p =

[
1 0
0 1

]
,

save the pair (M,N) to the list inverses and exit the inner loop;
Step 8: Exit outer loop;
Step 9: Print the inverses of elements of GL(2, Zp).

Program

The following PYTHON script implements the algorithm.

import numpy as np

#Function to check primality of an integer greater than 1

def isprime(n):

for d in range(2, int(n**0.5) + 1):

if n % d == 0:

return False

return True

#Function to calculate all permutations with repetitions of given size

def perm(s, r):

permutations = [[]]

for _ in range(r):

temp_permutations = []

for permutation in permutations:

for element in s:

temp_permutations.append(permutation + [element])

permutations = temp_permutations

return permutations

#Function to calculate determinant of 2x2 matrices

def det(m):

return m[0, 0]*m[1, 1] - m[0, 1]*m[1, 0]

#Step 1
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p = int(input(‘p = ’))

#Step 2

if p <= 1 or not isprime(p):

raise ValueError(‘p should be a prime number.’)

#Step 3

permutations = perm(list(range(0, p)), 2*2)

gl = []

for permutation in permutations:

m = np.matrix(np.reshape(permutation, (2, 2)))

d = det(m)%p

if d != 0:

gl.append(m)

#Step 4

inverses = []

I = np.matrix(’1, 0; 0, 1’)

#Step 5

for M in gl:

#Step 6

for N in gl:

#Step 7

if ((M*N % p)==I).all():

inverses.append((M, N))

break

#Step 9

print(f‘Inverses of elements in GL(2, Z{p}) are as following:’)

for M, N in inverses:

print(f‘[{M[0, 0]}, {M[0, 1]}; {M[1, 0]}, {M[1, 1]}]^(-1) =

[{N[0, 0]}, {N[0, 1]}; {N[1, 0]}, {N[1, 1]}]’)

Output

The output of the program for the given input is as follows:
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Exercise Problem

Write a program that takes the input of a prime number p < 10 from the user and prints
the inverse of each element in the group SL(2, Zp). Run the program for p = 3.

Practical No. 17

Aim

To solve the given problem with the help of PYTHON.

Problem

Write a program that takes the input of a positive integer n. Then it prints all the unique
cyclic subgroups generated by elements of Zn. Run the program for n = 2, 5, 12, 18.

Theory

The cyclic subgroup k generated by kϵZn is given by

k = {mk mod n : mϵZ}

.

Algorithm

Step 1: Prompt user to give input of integer n;
Step 2: Check if n is a positive integer. If not, show an error and exit;
Step 3: Define a list zn and save elements Zn in it;
Step 4: Define a list subgroups to save generators and generated subgroup pairs;
Step 5: Run a loop for each k in Zn;
Step 6: At each iteration, define u = 0 and a list subgroup to save elements of k;
Step 7: Run an inner loop;
Step 8: Set u = (u+k) mod n, save u to subgroup list. If u = 0, then exit the inner loop;
Step 9: If the current subgroup exists in the subgroups list, append k to the list of corre-
sponding generators;
Step 10: Otherwise save (generators, subgroup) pair to the subgroups list;
Step 11: Exit the outer loop;
Step 12: Print all the cyclic subgroups of Zn.
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Program

The following PYTHON script implements the algorithm.

#Step 1

n = int(input(‘n = ’))

#Step 2

if n <= 0:

raise ValueError(‘n should be a positive integer.’)

#Step 3

zn = list(range(n))

#Step 4

subgroups = []

#Step 5

for k in zn:

#Step 6

u = 0

subgroup = []

#Step 7

while True:

#Step 8

u = (u + k)%n

subgroup.append(u)

if u == 0:

break

subgroup = sorted(subgroup)

#Step 9

saved = False

for generators, savedSubgroup in subgroups:

if subgroup == savedSubgroup:

generators.append(k)

saved = True

break

#Step 10

if not saved:

subgroups.append(([k], subgroup))

#Step 12

print(f‘All the cyclic subgroups in Z{n} are as following:’)

for generators, subgroup in subgroups:

for generator in generators:

print(f‘|{generator}| = ’, end=’’)

print(f‘{subgroup}.’)
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Output

The output of the program for the given input is as follows:

Exercise Problem

Write a program that takes the input of an integer n > 1. Then it prints all the unique
cyclic subgroups generated by elements of U(n). Run the program for n = 10, 12, 15, 30.

Practical No. 18

Aim

To solve the given problem with the help of PYTHON.

Problem

Write a program that takes the input of a positive integer n and a prime number p. Then
it prints all the unique cyclic subgroups generated by elements of GL(n, Zp). Run the
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program for n = 2 and p = 3.

Theory

The cyclic subgroup M generated by MϵGL(n, Zp) is given by

M = {Mm mod p : mϵZ}

.

Algorithm

Step 1: Prompt user to give input of integer n;
Step 2: Check if n is a positive integer. If not, show an error and exit;
Step 3: Prompt user to give input of integer p;
Step 4: Check if p is a prime integer. If not, show an error and exit;
Step 5: Define a list gl and save elements of GL(n, Zp) in it;
Step 6: Define a list subgroups to save generators and generated subgroup pairs;
Step 7: Run a loop for each M in GL(n, Zp);
Step 8: At each iteration, define U = I and a list subgroup to save elements of M ;
Step 9: Run an inner loop;
Step 10: Set U = UM mod p, save U to subgroup list. If U = I, then exit the inner loop;
Step 11: If the current subgroup exists in the subgroups list, append M to the list of
corresponding generators;
Step 12: Otherwise save (generators, subgroup) pair to the subgroups list;
Step 13: Exit the outer loop;
Step 14: Print all the cyclic subgroups of GL(n, Zp).

Program

The following PYTHON script implements the algorithm.

import numpy as np

#Function to check primality of an integer greater than 1

def isprime(n):

for d in range(2, int(n**0.5) + 1):

if n % d == 0:

return False

return True

#Function to calculate all permutations with repetitions of given size

def perm(s, r):
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permutations = [[]]

for _ in range(r):

temp_permutations = []

for permutation in permutations:

for element in s:

temp_permutations.append(permutation + [element])

permutations = temp_permutations

return permutations

#Function to calculate determinant of square matrices

def det(m):

r, c = m.shape

if r != c:

raise IndexError(‘Given matrix is not a square matrix.’)

if r == 1:

return m[0, 0]

d = 0

for j in range(c):

minor = np.delete(m, 0, 0)

minor = np.delete(minor, j, 1)

cofactor = (-1)**(j)*det(minor)

d += m[0, j]*cofactor

return d

#Function to print matrices on single line

def printmatrix(m):

r, c = m.shape

print(‘[ ’, end=’’)

for i in range(r - 1):

for j in range(c - 1):

print(f‘{m[i, j]}, ’, end=’’)

print(f‘{m[i, c-1]}; ’, end=’’)

for j in range(c - 1):

print(f‘{m[r-1, j]}, ’, end=’’)

print(f‘{m[r-1, c-1]}]’, end=’’)

#Step 1

n = int(input(‘n = ’))

#Step 2

if n <= 0:

raise ValueError(‘n should be a positive integer.’)

#Step 3

p = int(input(‘p = ’))

#Step 4

if p <= 1 or not isprime(p):

raise ValueError(‘p should be a prime number.’)
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#Step 5

permutations = perm(list(range(0, p)), n*n)

gl = []

for permutation in permutations:

m = np.matrix(np.reshape(permutation, (n, n)))

d = det(m)%p

if d != 0:

gl.append(m)

#Step 6

subgroups = []

I = np.matrix(np.eye(n, dtype=int))

#Step 7

for M in gl:

#Step 8

U = np.matrix(np.eye(n, dtype=int))

subgroup = []

#Step 9

while True:

#Step 10

U = U*M%p

subgroup.append(U)

if (U == I).all():

break

#Step 11

saved = False

for generators, savedSubgroup in subgroups:

if len(subgroup) != len(savedSubgroup):

continue

equal = True

for M in subgroup:

found = False

for N in savedSubgroup:

if (M==N).all():

found = True

break

if not found:

equal = False

break

if equal:

generators.append(M)

saved = True

break

#Step 12

if not saved:
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subgroups.append(([M], subgroup))

#Step 14

print(f‘All the cyclic subgroups in GL({n}, Z{p}) are as following:’)

for generators, subgroup in subgroups:

for generator in generators:

print(‘|’, end=’’)

printmatrix(generator)

print(‘| = ’, end=’’)

print(‘{’, end=’’)

for M in subgroup[:-1]:

printmatrix(M)

print(‘, ’, end=’’)

printmatrix(subgroup[-1])

print(’}’)

Output

The output of the program for the given input is as follows:
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Exercise Problem

Write a program that takes the input of a positive integer n and a prime number p. Then it
prints all the unique cyclic subgroups generated by elements of SL(n, Zp). Run the program
for n = 2 and p = 3.

Practical No. 19
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Aim

To solve the given problem with the help of PYTHON.

Problem

Write a program to print all the left cosets of the subgroup generated by a given integer k
in Zn where 0 ≤ k < n. Assume n is less than 10. Run the program for (n, k) = (4, 3) and
(8, 6). If ba+ k, then what is the relation between cosets a+ k and b+ k?

Theory

Let H be a subgroup of a group G. Then, the left coset aH (a +H in additive notation)
of H in G containing aϵG is defined as

aH = {ah : hH}.

In Zn, we have k = mk mod n : m = 1, 2, = H (say).Then, for aϵZn, the coset a + H is
given by

a+H = {(a+mk) mod n : m = 1, 2, }.

Algorithm

Step 1: Prompt user to give input of integer n;
Step 2: Check if n is a positive integer. If not, show an error and exit;
Step 3: Prompt user to give input of integer p;
Step 4: Check if p is a prime integer. If not, show an error and exit;
Step 5: Define a list gl and save elements of GL(n, Zp) in it;
Step 6: Define a list subgroups to save generators and generated subgroup pair;
Step 7: Run a loop for each M in GL(n, Zp);
Step 8: At each iteration, define U = I and a list subgroup to save elements of M ;
Step 9: Run an inner loop;
Step 10: Set U = UM mod p, save U to subgroup list. If U = I, then exit the inner loop;
Step 11: If the current subgroup exists in the subgroups list, append M to the list of
corresponding generators;
Step 12: Otherwise save (generators, subgroup) pair to the subgroups list;
Step 13: Exit the outer loop;
Step 14: Print all the cyclic subgroups of GL(n, Zp).

Program

The following PYTHON script implements the algorithm.
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#Input

n = int(input("n = "))

#Step 1

if not (0 < n < 10):

raise ValueError(f"n = {n} is not between 0 and 10.")

#Input

k = int(input("k = "))

#Step 2

if not (0 <= k < n):

raise ValueError(f"k = {k} is either less than 0 or more than {n - 1}.")

#Step 3

elements = list(range(0, n))

#Step 4

subgroup = []

m = 0

while True:

m = (m + k) % n

subgroup.append(m)

if m == 0:

subgroup = sorted(subgroup)

break

#Step 5

cosets = []

#Step 6

for a in elements:

#Step 7

coset = sorted([((a + b) % n) for b in subgroup])

#Step 8

cosets.append((a, coset))

#Step 10

print(f‘Z{n} = {elements}\n’)

print(f‘<{k}> = {subgroup}\n’)

print(f’The cosets are as following:’)

for a, coset in cosets:

print(f‘{a} + <{k}> = {coset}’)

Output

The output of the program for the given input is as follows:
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Conclusion

We observe that in each case if bϵa+ k, then a+ k = b+ k.

Exercise Problem

Write a program to print all the distinct left cosets of a subgroup generated by k in U(n).
Also, print the order of U(n), order of subgroup generated by k, and the number of distinct
left cosets. Assume n is less than 100. Run the program for (n, k) = (8, 5), (30, 11), (36, 25).
What is the relation among the order of U(n), order of subgroup generated by k, and the
number of distinct left cosets?

Practical No. 20

Aim

To solve the given problem with the help of PYTHON.
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Problem

Write a program that takes the input of a prime number p and two 22 matrices M and N
in GL(2, Zp). Then, it prints the left and right cosets of the subgroup generated by M con-

taining N i.e. NM and MN . Run the program for p = 3 and (M,N) = (

[
2 2
0 1

]
,

[
1 0
1 2

]
),

(

[
2 0
0 2

]
,

[
1 2
1 1

]
). Is the left coset equal to the corresponding right coset in each case?

Theory

Let H be a subgroup of a group G. Then, the left coset aH (a +H in additive notation)
of H in G containing aϵG is defined as

aH = {ah : hH}.

Similarly, the right coset Ha (H + a in additive notation) of H in G containing aϵG is
defined as

Ha = {ha : hH}.

Algorithm

Step 1: Prompt user to give input of integer p;
Step 2: Check if p is a prime integer. If not, show an error and exit;
Step 3: Prompt user to give input of Matrix M ;
Step 4: Check ifM is a matrix GL(2, Zp). If not, show an error and exit; Step 5: Prompt
user to give input of matrix N ;
Step 6: Check if N is a matrix in GL(2, Zp). If not, show an error and exit;
Step 7: Define a list gl and save elements of GL(n, Zp) in it;
Step 8: Define a list subgroup and save elements of M in it;
Step 9: Define a list leftCoset and save elements of NMzin it;
Step 10: Define a list rightCoset and save elements of MN in it;
Step 11: Print all the cosets NM and MN .

Program

The following PYTHON script implements the algorithm.

import numpy as np

#Function to check primality of an integer greater than 1

def isprime(n):

for d in range(2, int(n**0.5) + 1):

if n % d == 0:
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return False

return True

#Function to calculate all permutations with repetitions of given size

def perm(s, r):

permutations = [[]]

for _ in range(r):

temp_permutations = []

for permutation in permutations:

for element in s:

temp_permutations.append(permutation + [element])

permutations = temp_permutations

return permutations

#Function to calculate determinant of 2x2 matrices

def det(m):

return m[0, 0]*m[1, 1] - m[0, 1]*m[1, 0]

#Function to print matrices on single line

def printmatrix(m):

r, c = m.shape

print(’[ ’, end=’’)

for i in range(r - 1):

for j in range(c - 1):

print(f‘{m[i, j]}, ’, end=’’)

print(f‘{m[i, c-1]}; ’, end=’’)

for j in range(c - 1):

print(f‘{m[r-1, j]}, ’, end=’’)

print(f‘{m[r-1, c-1]}]’, end=’’)

#Step 1

p = int(input(‘p = ’))

#Step 2

if p <= 1 or not isprime(p):

raise ValueError(‘p should be a prime number.’)

#Step 3

M = np.matrix(input(‘M = ’), int)

#Step 4

mat = M % p

if (mat != M).any():

raise ValueError(f‘M contains entries not in Z{p}.’)

d = det(M)%p

if d==0:

raise ValueError(f‘M does not belong to GL(2, Z{p}).’)

#Step 5

N = np.matrix(input(‘N = ’))
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#Step 6

mat = N % p

if (mat != N).any():

raise ValueError(f‘N contains entries not in Z{p}.’)

d = det(N)%p

if d==0:

raise ValueError(f‘N does not belong to GL(2, Z{p}).’)

#Step 7

permutations = perm(list(range(0, p)), 4)

gl = []

for permutation in permutations:

m = np.matrix(np.reshape(permutation, (2, 2)))

d = det(m)%p

if d != 0:

gl.append(m)

#Step 8

I = np.matrix(np.eye(2, dtype=int))

U = np.matrix(np.eye(2, dtype=int))

subgroup = []

while True:

U = U*M%p

subgroup.append(U)

if (U == I).all():

break

#Step 9

leftCoset = [N*X%p for X in subgroup]

#Step 10

rightCoset = [X*N%p for X in subgroup]

#Step 11

print(f‘The cosets are as following:’)

print(’N<M> = {‘, end=’’)

for X in leftCoset[:-1]:

printmatrix(X)

print(‘, ’, end=’’)

printmatrix(leftCoset[-1])

print(’}’)

print(‘<M>N = {‘, end=’’)

for X in rightCoset[:-1]:

printmatrix(X)

print(‘, ’, end=’’)

printmatrix(rightCoset[-1])

print(’}’)
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Output

The output of the program for the given input is as follows:

Conclusion

We observe that the left coset is not equal to the right coset in each case. In the first case,
two cosets are not equal whereas in the second case, they are equal.

Exercise Problem

Write a program that takes the input of a prime number p and two 22 matrices M and N
in SL(2, Zp). Then, it prints the left and right cosets of the subgroup generated by M con-

taining N i.e. NM and MN . Run the program for p = 3 and (M,N) = (

[
2 2
0 1

]
,

[
1 0
1 2

]
),

(

[
2 0
0 2

]
,

[
1 2
1 1

]
). Is the left coset equal to the corresponding right coset in each case? .

Practical No. 21

Aim

To solve the given problem with the help of PYTHON.
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Problem

Write a program to calculate ak mod p using Fermats Little Theorem for given in-
teger a, positive integer k, and prime number p. Run the program for (a, k, p) =
(5, 19, 7), (7, 228, 11).

Theory

The Fermats Little Theorem provides an efficient way to calculate ak mod p. It states:
Fermats Little Theorem: For every integer a and every prime p, ap mod p = a mod p.
Let k > 0. For any integer a:

• If a mod p = 0, then p | a =⇒ p | ak mod p = 0.

• If a mod p ̸= 0. Then, dividing both sides by a, Fermats Little Theorem implies
that a(p−1) mod p = 1. Let r = k mod (p − 1). Then, for some integer q, we have
k = q(p − 1) + r, and therefore ak mod p = aq(p−1)+r mod p = [(a(p−1) mod p)q(ar

mod p)] mod p = ar mod p.

Algorithm

Step 1: Prompt user to give input of a;
Step 2: Prompt user to give input of k;
Step 3: Check if k is a positive integer. If it is not, show an error and exit;
Step 4: Prompt user to give input of p;
Step 5: Check if p is a prime integer. If it is not, show an error and exit;
Step 6: Define the result variable;
Step 7: If a mod p = 0, set result = 0;
Step 8: Otherwise calculate r = k mod (p− 1) and set result = ar mod p;
Step 9: Print result.

Program

The following PYTHON script implements the algorithm.

#Function to check if primality of an integer greater than 2

def isprime(x):

for i in range(2, x-1):

if x % i == 0:

return False

else:

return True

#Input
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a = int(input("a = "))

k = int(input("k = "))

p = int(input("p = "))

#Step 1

if (p <= 1 or not isprime(p)):

raise ValueError(f"p = {p} is not a prime.")

#Step 2

if k <= 0:

raise ValueError(f"k = {k} is not a positive integer.")

#Step 3

result = 0

#Step 4

if a%p == 0:

result = 0

#Step 5

else:

r = k % (p - 1)

result = a**r % p

#Step 6

print(f‘{a}^{k} mod {p} = {result}’)

Output

The output of the program for the given input is as follows:
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Exercise Problem

Write a program to calculate ak mod m using Eulers theorem for given non-negative
integers a, k and m > 1 where a and m are relatively prime. Run the program for
(a, k,m) = (20, 61, 9), (32, 164, 15).
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Chapter 6

Partial Differential Equations

Practical No. 1

Aim

To solve the first-order partial linear differential equation using Mathematica.

Problem

Write the differential equation p+ q = x+ y in Mathematica. Also find the solution of the
given equation.

Theory

If P (x, y, z)p + Q(x, y, z)q = R(x, y, z) is a linear partial differential equation then the
Lagrange’s auxiliary equation becomes

dx

P
=
dy

Q
=
dz

R

After solving these equation, we get f1(x, y, z) = c1 and f2(x, y, z) = c2. The solution of
problem is given by α(f1, f2) = 0.

Algorithm

Step1: write the partial differential equation taking taking D[u[x,y],x] as ∂u
∂x

and D[u(x,y),y]
as ∂u

∂y
;

Step2: click the run command button to see the given differential equation in Mathemat-
ica;
Step3: The partial derivatives ∂u

∂x
and ∂u

∂y
looks like u(1,0) and u(0,1);
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Step4: Write the program to solve the above equation. The command for partial differen-
tial in Mathematica is DSolve;
Step5: Write solution of the equation asDSolve[equation, dependentvariable, independentvariables];
Step6: Click the Run command button to see the solution of the given differential equation.

Program

The input and the output of the program is as following:

In[1]:= eqn = D[u[x, y], y] + D[u[x, y], x] - (x + y) == 0;

DSolve[eqn, u[x, y], {x, y}]

Out[1]= -x - y + Derivative[0, 1][u][x, y] + Derivative[1, 0][u][x, y] == 0

Out[2]= {{u[x, y] -> x y + C[1][-x + y]}}

Conclusion

The solution of linear partial differential equation with dependent variable can be find out.

Exercise Problem

Write the differential equation 3p − 2q = 2 + y in Mathematica. Also find the solution of
the given equation.

Practical No. 2

Aim

To solve the first-order nonlinear partial differential equation using Mathematica.

Problem

Write the differential equation pq = 1 in Mathematica. Also find the solution of the given
equation.
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Theory

The general nonlinear partial differential of order one of function u[x, y] is given by
f(x, y, z, p, q) = 0.
The Charpit’s auxiliary is given

dx

fp
=
dy

fq
=

dz

pfp + qfq
=

−dp
fx + pfz

=
−dq

fx + qfz
=
df

0
.

After solving these equation, we get f1(x, y, z) = p and f2(x, y, z) = q. The solution of
problem is given by z =

∫
pdx+

∫
qdy + a.

Algorithm

Step1: Write the partial differential equation taking D[u(x,y),x] as ∂u
∂x

and D[u(x,y),y] as
∂u
∂y
;

Step2: Click the run command button to see the given differential equation in Mathemat-
ica;
Step3: The partial derivatives ∂u

∂x
and ∂u

∂y
look like u(1,0) and u(0,1);

Step4: Write the program to solve the above equation. The command for partial differen-
tial equations in Mathematica is DSolve;
Step5: Write solution of the equation asDSolve[equation, dependentvariable, independentvariables];
Step6: Click the Run command button to see the solution of the given differential equation.

Program

The input and the output of the program is as following:

In[52]:= DSolve[D[u[x, y], y] * D[u[x, y], x] == 1, u[x, y], {x, y}]

Out[52]= {{u[x, y] -> c1 + x/c2 + y c2}}

Conclusion

The solution of nonlinear partial differential equation with dependent variable can be find
out.

Exercise Problem

Write the differential equation pq = p + q in Mathematica. Also find the solution of the
given equation.
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Practical No. 3

Aim

To solve the first-order partial linear differential with variable coefficients using Mathemat-
ica.

Problem

Write the differential equation p + zq = 0 in Mathematica. Also find the solution of the
given equation.

Theory

If P (x, y, z)p + Q(x, y, z)q = R(x, y, z) is a linear partial differential equation then the
Lagrange’s auxiliary equation becomes

dx

P
=
dy

Q
=
dz

R

After solving these equation, we get f1(x, y, z) = c1 and f2(x, y, z) = c2. The solution of
problem is given by α(f1, f2) = 0.

Algorithm

Step1: Write the partial differential equation taking D[u[x,y],x] as ∂u
∂x

and D[u[x,y],y] as
∂u
∂y
;

Step2: Click the run command button to see the given differential equation in Mathemat-
ica;
Step3: The partial derivatives ∂u

∂x
and ∂u

∂y
looks like u(1,0) and u(0,1);

Step4: Write the program to solve the above equation. The command for partial differen-
tial equation in Mathematica is DSolve;
Step5: Write solution of the equation asDsolve[equation, dependentvariable, independentvariables];
Step6: Click the Run command button to see the solution of the given differential equation.

Program

The input and the output of the program is as following:

In[1]:= z := u[x, y]

p := D[u[x, y], x]

q := D[u[x, y], y]
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BurgersEquation = p + z q == 0;

sol = DSolve[BurgersEquation, u, {x, y}]

Out[5]= Solve[u[x, y] == c1 * (x - y/u[x, y]), u[x, y]]

Conclusion

The solution of linear partial differential equation with dependent variable can be find out.

Exercise Problem

Write the differential equation xp+ yq = xy in Mathematica. Also find the solution of the
given equation.

Practical No. 4

Aim

To solve the first-order nonlinear partial differential equation with variable coefficients using
Mathematica.

Problem

Write the differential equation xyp + pq + yq = yz in Mathematica. Also find and verify
the solution of the given equation.

Theory

The general first-order nonlinear partial differential equation for an unknown function u[x, y]
is given by f(x, y, z, p, q) = 0.
The Charpit’s auxiliary equation is given

dx

fp
=
dy

fq
=

dz

pfp + qfq
=

−dp
fx + pfz

=
−dq

fx + qfz
=
df

0
.

After solving these equation, we get f1(x, y, z) = p and f2(x, y, z) = q. The solution of
problem is given by z =

∫
pdx+

∫
qdy + a.
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Algorithm

Step1: Write the partial differential equation taking D[u[x,y],x] as ∂u
∂x

and D[u[x,y],y] as
∂u
∂y
;

Step2: Click the run command button to see the given differential equation in Mathemat-
ica;
Step3: The partial derivatives ∂u

∂x
and ∂u

∂y
looks like u(1,0) and u(0,1);

Step4: Write the program to solve the above equation. The command for partial differen-
tial equation in Mathematica is DSolve;
Step5: Write solution of the equation asDSolve[equation, dependentvariable, independentvariables];
Step6: Click the Run command button to see the solution of the given differential equation.

Program

The input and the output of the program is as following:

In[22]:= eqn = x y p + p q + y q == y z;

sol = DSolve[eqn, u, {x, y}]

Out[23]= {{u -> Function[{x, y}, x c1 + e^(y - c1 Log[y c1]) c2]}}

Conclusion

The solution of nonlinear partial differential equation with dependent variable can be find
out.

Exercise Problem

Write the differential equation xp+ yq = pq in Mathematica. Also find the solution of the
given equation.

Practical No. 5

Aim

To solve the first-order nonlinear partial differential equation of standard form-I using
Mathematica.
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Problem

Write the differential equation p2 + q2 = 1 in Mathematica. Also, find and verify the
solution of the given equation.

Theory

The general first-order nonlinear partial differential equation for an unknown function u[x, y]
is given by f(x, y, z, p, q) = 0.
The Charpit’s auxiliary equation is given

dx

fp
=
dy

fq
=

dz

pfp + qfq
=

−dp
fx + pfz

=
−dq

fx + qfz
=
df

0
.

After solving these equation, we get f1(x, y, z) = p and f2(x, y, z) = q. The solution of
problem is given by z =

∫
pdx+

∫
qdy + a.

Algorithm

Step1: Write the partial differential equation taking D[u[x,y],x] as ∂u
∂x

and D[u[x,y],y] as
∂u
∂y
;

Step2: Click the Run command button to see the given differential equation in Mathe-
matica;
Step3: The partial derivatives ∂u

∂x
and ∂u

∂y
looks like u(1,0) and u(0,1);

Step4: Write the program to solve the above equation. The command for partial differen-
tial equation in Mathematica is DSolve;
Step5: Write solution of the equation asDSolve[equation, dependentvariable, independentvariables];
Step6: Click the run command button to see the solution of the given differential equation.

Program

The input and the output of the program is as following:

In[30]:= eqn = p^2 + q^2 == 1;

sol = u /. DSolve[eqn, u, {x, y}][[1]] /. C[1][t_] -> t

eqn /. {u -> sol}

Out[31]= Function[{x, y}, c1 + y c2 - x Sqrt[1 - c2^2]]

Out[32]= True
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Conclusion

The solution of nonlinear partial differential equation with dependent variable can be find
out.

Exercise Problem

Write the differential equation p2 + q = q2 in Mathematica. Also find the solution of the
given equation.

Practical No. 6

Aim

To solve the first-order nonlinear partial differential equation of standard form-II(Clairat
equation) using Mathematica.

Problem

Write the differential equation z = xp + yq + 2pq
√
1− p2 in Mathematica. Also find and

verify the solution of the given equation.

Theory

The general first-order nonlinear partial differential equation for an unknown function u[x, y]
is given by f(x, y, z, p, q) = 0.
The Charpit’s auxiliary equation is given

dx

fp
=
dy

fq
=

dz

pfp + qfq
=

−dp
fx + pfz

=
−dq

fx + qfz
=
df

0
.

After solving these equation, we get f1(x, y, z) = p and f2(x, y, z) = q. The solution of
problem is given by z =

∫
pdx+

∫
qdy + a.

Algorithm

Step1: Write the partial differential equation taking D[u[x,y],x] as ∂u
∂x

and D[u[x,y],y] as
∂u
∂y
;

Step2: Click the Run command button to see the given differential equation in Mathe-
matica;
Step3: The partial derivatives ∂u

∂x
and ∂u

∂y
look like u(1,0) and u(0,1);
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Step4: Write the program to solve the above equation. The command for partial differen-
tial equation in Mathematica is DSolve;
Step5: Write solution of the equation asDSolve[equation, dependentvariable, independentvariables];
Step6: Click the run command button to see the solution of the given differential equation.

Program

The input and the output of the program is as following:

In[18]:= Clairaut = z == x*p + y*q + 2*p*q*Sqrt[1 - p^2];

sol = DSolve[Clairaut, u, {x, y}]

Out[19]= {{u -> Function[{x, y}, x c1 + y c2 + 2 c1 Sqrt[1 - c1^2] c2]}}

Conclusion

The solution of nonlinear partial differential equation with dependent variable can be find
out.

Exercise Problem

Write the differential equation pq = 4z in Mathematica. Also find the solution of the given
equation.

Practical No. 7

Aim

To solve the first-order nonlinear partial differential equation of standard form-III (Only p,
q and z involve) using Mathematica.

Problem

Write the differential equation p2 + q2 + 4z = 4 in Mathematica. Also, find and verify the
solution of the given equation.
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Theory

The general first-order nonlinear partial differential equation for an unknown function u[x, y]
is given by f(x, y, z, p, q) = 0. The Charpit’s auxiliary equation is given

dx

fp
=
dy

fq
=

dz

pfp + qfq
=

−dp
fx + pfz

=
−dq

fx + qfz
=
df

0
.

After solving these equation, we get f1(x, y, z) = p and f2(x, y, z) = q. The solution of
problem is given by z =

∫
pdx+

∫
qdy + a.

Algorithm

Step1: Write the partial differential equation taking D[u[x,y],x] as ∂u
∂x

and D[u[x,y],y] as
∂u
∂y
;

Step2: Click the Run command button to see the given differential equation in Mathe-
matica;
Step3: The partial derivatives ∂u

∂x
and ∂u

∂y
looks like u(1,0) and u(0,1);

Step4: Write the program to solve the above equation. The command for partial differen-
tial equation in Mathematica is DSolve;
Step5: Write solution of the equation as DSolve[equation,dependent variable,indepndent
variables];
Step6: Click the Run command button to see the solution of the given differential equation.

Program

The input and the output of the program is as following:

In[1]:= sol = DSolve[4 z + p^2 + q^2 == 4, u, {x, y}]

Out[1]= {{u -> Function[{x, y},

(1 - y^2 - 2 x y c1 + c1^2 + x^2 c1^2 - 2 y c2 - 2 x c1 c2 - c2^2) /

(1 + c1^2)]}}

Conclusion

The solution of nonlinear partial differential equation with dependent variable can be find
out.

Exercise Problem

Write the differential equation pq = 4z in Mathematica. Also find the solution of the given
equation.
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Practical No. 8

Aim

To solve the first-order nonlinear partial differential equation of standard form-IV (f1(x,p) =
f2(y,q)) using Mathematica.

Problem

Write the differential equation x(1 + y)p = y(1 + x)q in Mathematica. Also find and verify
the solution of the given equation.

Theory

The general first order nonlinear partial differential equation for an unknown function u[x, y]
is given by f(x, y, z, p, q) = 0. The Charpit’s auxiliary equation is given

dx

fp
=
dy

fq
=

dz

pfp + qfq
=

−dp
fx + pfz

=
−dq

fx + qfz
=
df

0
.

After solving these equation, we get f1(x, y, z) = p and f2(x, y, z) = q. The solution of
problem is given by z =

∫
pdx+

∫
qdy + a.

Algorithm

Step1: Write the partial differential equation taking D[u[x,y],x] as ∂u
∂x

and D[u[x,y],y] as
∂u
∂y
;

Step2: Click the Run command button to see the given differential equation in Mathe-
matica;
Step3: The partial derivatives ∂u

∂x
and ∂u

∂y
look like u(1,0) and u(0,1);

Step4: Write the program to solve the above equation. The command for partial differen-
tial equation in Mathematica is DSolve;
Step5: Write solution of the equation as DSolve[equation,dependent variable,indepndent
variables];
Step6: Click the Run command button to see the solution of the given differential equation.

Program

The input and the output of the program is as following:

In[26]:= eqn = x (1 + y) p == y (1 + x) q;

sol = DSolve[eqn, u, {x, y}]
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Out[27]= {{u -> Function[{x, y}, c1 y - Log[Exp[x] / (x y)]]}}

Conclusion

The solution of nonlinear partial differential equation with dependent variable can be find
out.

Exercise Problem

Write the differential equation p− 3x2 = q2 − y in Mathematica. Also find the solution of
the given equation.

Practical No. 9

Aim

To find the singular solution of non-linear partial differential equation using Mathematica.

Problem

Write the differential equation 4z + p2 + q2 = 4 in Mathematica. Also find and verify the
solution of the given equation.

Theory

The general first order nonlinear partial differential equation for an unknown function u[x, y]
is given by f(x, y, z, p, q) = 0. The Charpit’s auxiliary equation is given

dx

fp
=
dy

fq
=

dz

pfp + qfq
=

−dp
fx + pfz

=
−dq

fx + qfz
=
df

0
.

After solving these equation, we get f1(x, y, z) = p and f2(x, y, z) = q. The solution of
problem is given by z =

∫
pdx+

∫
qdy + a.

Algorithm

Step1: Write the partial differential equation taking D[u[x,y],x] as ∂u
∂x

and D[u[x,y],y] as
∂u
∂y
;
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Step2: Click the Run command button to see the given differential equation in Mathe-
matica;
Step3: The partial derivatives ∂u

∂x
and ∂u

∂y
looks like u(1,0) and u(0,1);

Step4: Write the program to solve the above equation. The command for partial differen-
tial equation in Mathematica is DSolve;
Step5: Write solution of the equation as DSolve[equation,dependent variable,indepndent
variables];
Step6: Click the Run command button to see the solution of the given differential equation.

Program

The input and the output of the program is as following:

In[28]:= sol = DSolve[4 z + p^2 + q^2 == 4, u, {x, y}];

twoparameterfamily = u[x, y] == (u[x, y] /. sol[[1]]);

envelopeoftwoparameterfamily = Eliminate[{twoparameterfamily,

D[twoparameterfamily, C[1]], D[twoparameterfamily, C[2]]}, {C[1], C[2]}]

Out[30]= u[x, y] == 1

Conclusion

The solution of nonlinear partial differential equation with dependent variable can be find
out.

Exercise Problem

Find the singular integral of nonlinear partial differential equation z2(p2 + q2 + 1) = 1

Practical No. 10

Aim

To solve the homogeneous second-order linear partial differential equation with constant
coefficients using Mathematica.

Problem

To solve the homogeneous second-order linear partial differential equation with constant
coefficients using Mathematica.
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∂2u
∂x2 +

∂2u
∂y2

= 0 in Mathematica. Also, find the solution of the given equation.

Theory

The second order linear partial differential equation is given by

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu = g

Where u = u(x, y) and a,b,c,d,e,f,g are functions of x and y only. If g=0, then the equation
becomes homogeneous. The solution of second order partial differential equation possible
in mathematica by command DSolve if principle part, i.e. a∂2u

∂x2 +b
∂2u
∂x∂y

+c∂
2u

∂y2
have constant

coefficients and the non principle part is vanishing, i.e. 0.

Algorithm

Step1: Write the partial differential equation taking D[u[x,y]{x,2}] as ∂2u
∂x2 and D[u[x,y]{y,2}]

as ∂2u
∂y2

;
Step2: Click the Run command button to see the given differential equation in Mathe-
matica;
Step3: The partial derivatives ∂2u

∂x2 and ∂2u
∂y2

looks like u(2,0) and u(0,2);
Step4: Write the program to solve the above equation. The command for partial differen-
tial equation in Mathematica is DSolve;
Step5: Write solution of the equation as DSolve[equation,dependent variable,{independent
variables}];
Step6: Click the Run command button to see the solution of the given differential equation.

Program

The input and the output of the program is as following:

In[64]:= LaplaceEquation = D[u[x, y], {x, 2}] + D[u[x, y], {y, 2}] == 0;

DSolve[LaplaceEquation, u[x, y], {x, y}]

Out[64]= u^(0,2)[x, y] + u^(2,0)[x, y] == 0

Out[65]= {{u[x, y] -> c1[i x + y] + c2[-i x + y]}}

Conclusion

The solution of homogeneous second order linear partial differential equation with constant
coefficients can be find out.
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Exercise Problem

Write the differential equation ∂2u
∂x2 + 2∂2u

∂y2
= 0. in Mathematica. Also find the solution of

the given equation.

Practical No. 11

Aim

To solve the non-homogeneous second order linear partial linear differential equation with
constant coefficients using Mathematica.

Problem

Write the differential equation ∂2u
∂x2 +

∂2u
∂y2

= 1 in Mathematica. Also find the solution of the
given equation.

Theory

The second order linear partial differential equation is given by

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu = g.

where u = u(x, y) and a,b,c,d,e,f,g are functions of x and y only.If g=0, then the equation
becomes homogeneous. The solution of second order partial differential equation possible
in Mathematica by command DSolve if principle part is vanishing, i.e.0.

Algorithm

Step1: Write the partial differential equation taking D[u[x,y] {x,2}] as ∂2u
∂x2 and D[u[x,y]

{y,2}] as ∂2u
∂y2

;
Step2: Click the run command button to see the given differential equation in Mathemat-
ica; Step3: The partial derivatives ∂2u

∂x2 and ∂2u
∂y2

looks like u(2,0) and u(0,2);
Step4: Write the program to solve the above equation. The command for partial differen-
tial equation in Mathematica is Dsolve;
Step5: Write solution of the equation as DSolve[equation,dependent variable,{independent
variables}];
Step6: Click the Run command button to see the solution of the given differential equation.
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Program

The input and the output of the program is as following:

In[66]:= eqn = D[u[x, y], {x, 2}] + D[u[x, y], {y, 2}] == 1;

DSolve[eqn, u[x, y], {x, y}]

Out[66]= u^(0,2)[x, y] + u^(2,0)[x, y] == 1

Out[67]= {{u[x, y] -> x^2/2 + c1[i x + y] + c2[-i x + y]}}

Conclusion

The solution of non-homogeneous second order linear partial differential equation with
constant coefficients can be find out.

Exercise Problem

Write the differential equation ∂2u
∂x2 + 2∂2u

∂y2
= 1 in Mathematica. Also find the solution of

the given equation.

Practical No. 12

Aim

To solve the non-homogeneous second order linear partial differential equation with constant
coefficients using Mathematica.

Problem

Write the differential equation ∂2u
∂x2 = 2 in Mathematica. Also find the solution of the given

equation.

Theory

The second order linear partial differential equation is given by

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu = g.

where, u = u(x, y) and a,b,c,d,e,f,g are functions of x and y only. If g=0, then the equation
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becomes homogeneous. The solution of second order partial differential equation possible
in Mathematica by command DSolve if principle part, i.e. a∂2u

∂x2 +b
∂2u
∂x∂y

+c∂
2u

∂y2
have constant

coefficients and the non principle part is vanishing, i.e.0.

Algorithm

Step1: Write the partial differential equation taking D[u[x,y], {x,2}] as ∂2u
∂x2 and D[u[x,y],

{y,2}] as ∂2u
∂y2

;
Step2: Click the run command button to see the given differential equation in Mathemat-
ica;
Step3: The partial derivatives ∂2u

∂x2 and ∂2u
∂y2

looks like u(2,0) and u(0,2);
Step4: Write the program to solve the above equation. The command for partial differen-
tial equation in Mathematica is DSolve;
Step5: Write solution of the equation as DSolve[equation,dependent variable,{independent
variables}];
Step6: Click the run command button to see the solution of the given differential equation.

Program

The input and the output of the program is as following:

In[66]:= eqn = D[u[x, y], {x, 2}] + D[u[x, y], {y, 2}] == 1;

DSolve[eqn, u[x, y], {x, y}]

Out[66]= u^(0,2)[x, y] + u^(2,0)[x, y] == 1

Out[67]= {{u[x, y] -> x^2/2 + c1[i x + y] + c2[-i x + y]}}

Conclusion

The solution of homogeneous second order linear partial differential equation with constant
coefficients can be find out.

Exercise Problem

Write the differential equation ∂2u
∂x2 + 2∂2u

∂y2
= 0 in Mathematica. Also find the solution of

the given equation.

Practical No. 13
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Aim

To solve the hyperbolic equation using Mathematica.

Problem

Write the differential equation 2∂2u
∂x2 + 7 ∂2u

∂x∂y
− 1∂2u

∂y2
= 0. in Mathematica. Also, find and

verify the solution of the given equation.

Theory

The second order linear partial differential equation is given by

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu = g.

where, u = u(x, y) and a,b,c,d,e,f,g are functions of x and y only. If g=0, then the equation
becomes homogeneous. The solution of second order partial differential equation possible
in Mathematica by command DSolve if principle part, i.e. a∂2u

∂x2 +b
∂2u
∂x∂y

+c∂
2u

∂y2
have constant

coefficients and the non principle part is vanishing, i.e.0.

Algorithm

Step1: Write the partial differential equation taking D[u[x,y], {x,2}] as ∂2u
∂x2 and D[u[x,y],

{y,2}] as ∂2u
∂y2

;
Step2: Click the run command button to see the given differential equation in Mathemat-
ica;
Step3: The partial derivatives ∂2u

∂x2 and ∂2u
∂y2

looks like u(2,0) and u(0,2);
Step4: Write the program to solve the above equation. The command for partial differen-
tial equation in Mathematica is DSolve;
Step5: Write solution of the equation as DSolve[equation,dependent variable,{independent
variables}];
Step6: Click the run command button to see the solution of the given differential equation.

Problem

The input and the output of the program is as following:

In[12]:= eqn = 2*D[u[x, y], {x, 2}] + 7*D[u[x, y], x, y] - D[u[x, y], {y, 2}] == 0;

sol = DSolve[eqn, u, {x, y}];

eqn /. sol // Simplify
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Out[12]= -u^(0,2)[x, y] + 7 u^(1,1)[x, y] + 2 u^(2,0)[x, y] == 0

Out[13]= {{u -> Function[{x, y},

c1[-1/4 (7 + Sqrt[57]) x + y] + c2[-1/4 (7 - Sqrt[57]) x + y]]}}

Out[14]= {True}

Conclusion

The solution of homogeneous second order linear partial differential equation with constant
coefficients can be find out.

Exercise Problem

Write the differential equation 1∂2u
∂x2 + 5 ∂2u

∂x∂y
− 1∂2u

∂y2
= 0 in Mathematica. Also find the

solution of the given equation.

Practical No. 14

Aim

To solve the elliptic equation using Mathematica.

Problem

Write the differential equation 3∂2u
∂x2 + 1 ∂2u

∂x∂y
+ 5∂2u

∂y2
= 0 in Mathematica. Also find and

verify the solution of the given equation.

Theory

The second order linear partial differential equation is given by

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu = g.

where, u = u(x, y) and a,b,c,d,e,f,g are functions of x and y only. If g=0, then the equation
becomes homogeneous. The solution of second order partial differential equation possible
in Mathematica by command DSolve if principle part, i.e.a∂2u

∂x2 + b
∂2u
∂x∂y

+ c∂
2u

∂y2
have constant

coefficients and the non principle part is vanishing, i.e.0.
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Algorithm

Step1: Write the partial differential equation taking D[u[x,y], {x,2}] as ∂2u
∂x2 and D[u[x,y],

{y,2}] as ∂2u
∂y2

;
Step2: Click the run command button to see the given differential equation in Mathemat-
ica;
Step3: The partial derivatives ∂2u

∂x2 and ∂2u
∂y2

looks like u(2,0) and u(0,2);
Step4: Write the program to solve the above equation. The command for partial differen-
tial equation in Mathematica is DSolve;
Step5: Write solution of the equation as DSolve[equation,dependent variable,{independent
variables}];
Step6: Click the run command button to see the solution of the given differential equation.

Problem

The input and the output of the program is as following:

In[15]:= eqn = 3*D[u[x, y], {x, 2}] + 1*D[u[x, y], x, y] + 5*D[u[x, y], {y, 2}] == 0;

sol = DSolve[eqn, u, {x, y}];

eqn /. sol // Simplify

Out[15]= 5 u^(0,2)[x, y] + u^(1,1)[x, y] + 3 u^(2,0)[x, y] == 0

Out[16]= {{u -> Function[{x, y},

c1[1/6 (-1 + I Sqrt[59]) x + y] + c2[1/6 (-1 - I Sqrt[59]) x + y]]}}

Out[17]= {True}

Conclusion

The solution of homogeneous second order linear partial differential equation with constant
coefficients can be find out.

Exercise Problem

Write the differential equation 1∂2u
∂x2 + 1 ∂2u

∂x∂y
+ 5∂2u

∂y2
= 0 in Mathematica. Also find the

solution of the given equation.

Practical No. 15
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Aim

To solve the parabolic equation using Mathematica.

Problem

Write the differential equation 4∂2u
∂x2 + 4 ∂2u

∂x∂y
+ 1∂2u

∂y2
= 0 in Mathematica. Also, find and

verify the solution of the given equation.

Theory

The second order linear partial differential equation is given by

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu = g.

where, u = u(x, y) and a,b,c,d,e,f,g are functions of x and y only. If g=0, then the equation
becomes homogeneous. The solution of second order partial differential equation possible
in Mathematica by command DSolve if principle part, i.e.a∂2u

∂x2 + b
∂2u
∂x∂y

+ c∂
2u

∂y2
have constant

coefficients and the non principle part is vanishing, i.e.0.

Algorithm

Step1: Write the partial differential equation taking D[u[x,y], {x,2}] as ∂2u
∂x2 and D[u[x,y],

{y,2}] as ∂2u
∂y2

;
Step2: Click the run command button to see the given differential equation in Mathemat-
ica;
Step3: The partial derivatives ∂2u

∂x2 and ∂2u
∂y2

looks like u(2,0) and u(0,2);
Step4: Write the program to solve the above equation. The command for partial differen-
tial equation in Mathematica is DSolve;
Step5: Write solution of the equation as DSolve[equation,dependent variable,{independent
variables}];
Step6: Click the run command button to see the solution of the given differential equation.

Program

The input and the output of the program is as following:

In[18]:= eqn = 4*D[u[x, y], {x, 2}] + 4*D[u[x, y], x, y] + 1*D[u[x, y], {y, 2}] == 0;

sol = DSolve[eqn, u, {x, y}];

eqn /. sol // Simplify
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Out[18]= u^(0,2)[x, y] + 4 u^(1,1)[x, y] + 4 u^(2,0)[x, y] == 0

Out[19]= {{u -> Function[{x, y},

c1[-x/2 + y] + c2[-x/2 - y]]}}

Out[20]= {True}

Conclusion

The solution of homogeneous second order linear partial differential equation with constant
coefficients can be find out.

Exercise Problem

Write the differential equation 1∂2u
∂x2 + 2 ∂2u

∂x∂y
+ 1∂2u

∂y2
= 0 in Mathematica. Also find the

solution of the given equation.

Practical No. 16

Aim

To solve the wave equation using Mathematica.

Problem

Write the differential equation ∂2u
∂x2 − ∂2u

∂y2
= 0 in Mathematica. Also, find the solution of the

given equation.

Theory

The second-order linear partial differential equation is given by

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu = g.

where, u = u(x, y) and a,b,c,d,e,f,g are functions of x and y only. If g=0, then the equation
becomes homogeneous. The solution of second order partial differential equation possible
in Mathematica by command DSolve if principle part, i.e.a∂2u

∂x2 + b
∂2u
∂x∂y

+ c∂
2u

∂y2
have constant

coefficients and the non principle part is vanishing, i.e.0.
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Algorithm

Step1: Write the partial differential equation taking D[u[x,y], {x,2}] as ∂2u
∂x2 and D[u[x,y],

{y,2}] as ∂2u
∂y2

;
Step2: Click the run command button to see the given differential equation in Mathemat-
ica;
Step3: The partial derivatives ∂2u

∂x2 and ∂2u
∂y2

looks like u(2,0) and u(0,2). Step4: Write the
program to solve the above equation. The command for partial differential equation in
Mathematica is DSolve;
Step5: Write solution of the equation as DSolve[equation,dependent variable,{independent
variables}];
Step6: Click the run command button to see the solution of the given differential equation.

Program

The input and the output of the program is as following:

In[1]:= WaveEquation = D[u[x, t], {x, 2}] - D[u[x, t], {t, 2}] == 0;

DSolve[WaveEquation, u[x, t], {t, x}]

Out[1]= {{u[x, t] -> c1[-t + x] + c2[t + x]}}

Conclusion

The solution of homogeneous second order linear partial differential equation with constant
coefficients can be find out.

Exercise Problem

Write the differential equation ∂2u
∂x2 − 2∂2u

∂y2
= 0 in Mathematica. Also find the solution of

the given equation.
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Practical No. 17

Aim

To solve the initial Boundary value problem for wave equation using Mathematica.

Problem

Write the differential equation 9∂2u
∂x2 − ∂2u

∂y2
= 0 in Mathematica. Also find and plot the

solution of the given equation with initial boundary condition

u(0, t) = 0, u(50, t) = 0, u(x, 0) = 3sin(2πx),
∂u(x, 0)

∂y
= 5sin(3πx).

Theory

The second order linear partial differential equation is given by

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu = g.

where, u = u(x, y) and a,b,c,d,e,f,g are functions of x and y only. If g=0, then the equation
becomes homogeneous. The solution of second order partial differential equation possible
in Mathematica by command DSolve if principle part, i.e.a∂2u

∂x2 + b
∂2u
∂x∂y

+ c∂
2u

∂y2
have constant

coefficients and the non principle part is vanishing, i.e.0.

Algorithm

Step1: Write the partial differential equation taking D[u[x,y], {x,2}] as ∂2u
∂x2 and D[u[x,y],

{y,2}] as ∂2u
∂y2

;
Step2: Click the run command button to see the given differential equation in Mathemat-
ica;
Step3: The partial derivatives ∂2u

∂x2 and ∂2u
∂y2

looks like u(2,0) and u(0,2);
Step4: Write the program to solve the above equation. The command for partial differen-
tial equation in Mathematica is DSolve;
Step5: Write solution of the equation as DSolve[equation,dependent variable,{independent
variables}];
Step6: Click the run command button to see the solution of the given differential equation.

Program

The input and the output of the program is as following:
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(* Initial boundary value problem for wave equation *)

eqn = D[u[x, t], {t, 2}] == 9 * D[u[x, t], {x, 2}];

f3[x_] := 3 * Sin[2 * Pi * x];

f4[x_] := 5 * Sin[3 * Pi * x];

waveEqSoln = u[x, t] /. DSolve[{eqn, u[0, t] == 0, u[50, t] == 0,

u[x, 0] == f3[x], Derivative[0, 1][u][x, 0] == f4[x]},

u[x, t], {x, t}] /. K[1] -> n

3 Cos[6 t] Sin[2 x] + (5 Sin[9 t] Sin[3 x]) / (9 )

Conclusion

The solution of homogeneous second order linear partial differential equation with constant
coefficients can be find out.

Exercise Problem

Write the differential equation ∂2u
∂x2 − ∂2u

∂y2
= −9.80665 in Mathematica. Also find and plot

the solution of the given equation with initial boundary condition

u(0, t) = 0, u(1, t) = 0, u(x, 0) = 10x2(1− x)2,
∂u(x, 0)

∂y
= 0.

Practical No. 18

Aim

To solve the wave equation with initial boundary conditions using Mathematica.

Problem

Write the differential equation ∂2u
∂y2

− 4∂2u
∂x2 = 0 in Mathematica. Also find and plot the

solution of the given equation with initial condition u(0, y) = 0, uy(x, 0) = 0, u(x, 0) = 10x4.
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Theory

The second order linear partial differential equation is given by

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu = g.

where, u = u(x, y) and a,b,c,d,e,f,g are functions of x and y only. If g=0, then the equation
becomes homogeneous. The solution of second order partial differential equation possible
in Mathematica by command DSolve if principle part, i.e.a∂2u

∂x2 + b
∂2u
∂x∂y

+ c∂
2u

∂y2
have constant

coefficients and the non principle part is vanishing, i.e.0.

Algorithm

Step1: Write the partial differential equation taking D[u[x,y], {x,2}] as ∂2u
∂x2 and D[u[x,y],

{y,2}] as ∂2u
∂y2

;
Step2: Click the run command button to see the given differential equation in Mathemat-
ica;
Step3: The partial derivatives ∂2u

∂x2 and ∂2u
∂y2

looks like u(2,0) and u(0,2);
Step4: Write the program to solve the above equation. The command for partial differen-
tial equation in Mathematica is DSolve;
Step5: Write solution of the equation as DSolve[equation,dependent variable,{independent
variables}];
Step6: Click the run command button to see the solution of the given differential equation.

Program

The input and the output of the program is as following:

In[14]:= weqn = D[u[x, t], {t, 2}] == 4 * D[u[x, t], {x, 2}];

In[15]:= sol = DSolveValue[

{weqn, u[x, 0] == 10 * x^4, Derivative[0, 1][u][x, 0] == 0,

u[0, t] == 0, u[x, t], {x, t}}

];

Out[14]= u^(0,2)[x, t] == 4 u^(2,0)[x, t]

Out[15]= Piecewise[{

{1/2 (10 (-2 t + x)^4 + 10 (2 t + x)^4), x > 2 t >= 0},

{1/2 (-10 (2 t - x)^4 + 10 (2 t + x)^4), 0 <= x <= 2 t}

}, Indeterminate]
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Conclusion

The solution of homogeneous second order linear partial differential equation with constant
coefficients can be find out.

Exercise Problem

Write the differential equation ∂2u
∂y2

− 4∂2u
∂x2 = 0 in Mathematica. Also find and plot the

solution of the given equation with initial condition u(0, y) = 0, uy(x, 0) = 0, u(x, 0) = x4.

Practical No. 19

Aim

To solve the Vibrating string initial value problem using Mathematica.

Problem

Write the differential equation ∂2u
∂t2

− ∂2u
∂x2 = 0 in Mathematica. Also, find and plot the

solution of the given equation with initial condition

ut(x, 0) = 0, u(x, 0) = x2(π − x), u(0, t) = u(π, t) = 0.

Theory

The second order linear partial differential equation is given by

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu = g.

where, u = u(x, y) and a,b,c,d,e,f,g are functions of x and y only. If g=0, then the equation
becomes homogeneous. The solution of second order partial differential equation possible
in Mathematica by command DSolve if principle part, i.e.a∂2u

∂x2 + b
∂2u
∂x∂y

+ c∂
2u

∂y2
have constant

coefficients and the non principle part is vanishing, i.e.0.
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Algorithm

Step1: Write the partial differential equation taking D[u[x,y], {x,2}] as ∂2u
∂x2 and D[u[x,y],

{y,2}] as ∂2u
∂y2

;
Step2: Click the run command button to see the given differential equation in Mathemat-
ica;
Step3: The partial derivatives ∂2u

∂x2 and ∂2u
∂y2

looks like u(2,0) and u(0,2);
Step4: Write the program to solve the above equation. The command for partial differen-
tial equation in Mathematica is DSolve;
Step5: Write solution of the equation as DSolve[equation,dependent variable,{independent
variables}];
Step6: Click the run command button to see the solution of the given differential equation.

Program

The input and the output of the program is as following:

In[1]:= weqn = D[u[x, t], {t, 2}] == D[u[x, t], {x, 2}];

In[2]:= bc = {u[0, t] == 0, u[, t] == 0};

In[3]:= ic = {u[x, 0] == x^2 ( - x), u[0,1][x, 0] == 0};

In[4]:= dsol = DSolve[{weqn, bc, ic}, u[x, t], {x, t}] /. {K[1] -> m};

In[5]:= asol[x_, t_] = u[x, t] /. dsol[[1]] // Activate;

In[6]:= Table[Show[

Plot[Table[asol[x, t][[m]], {t, 0, 4}], {x, 0, }, Ticks -> False,

ImageSize -> 150}], {m, 4}]

In[7]:= Animate[

Plot[asol[x, t], {x, 0, }, PlotRange -> {-5, 5}, ImageSize -> Medium,

PlotStyle -> Red], {t, 0, 2 }, SaveDefinitions -> True]

Out[4]= {{u -> Function[{x, t},

Sum[4 (1 + 2 (-1)^m) Cos[t m] Sin[x m] / m^3, {m, 1, }]]}}

Out[5]= 4 Cos[t] Sin[x] - (3/2) Cos[2 t] Sin[2 x] + (4/27) Cos[3 t] Sin[3 x]

- (3/16) Cos[4 t] Sin[4 x]
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Conclusion

The solution of homogeneous second order linear partial differential equation with constant
coefficients can be find out.

Exercise Problem

Write the differential equation ∂2u
∂t2

− ∂2u
∂x2 = 0 in Mathematica. Also find and plot the

solution of the given equation with initial condition ut(x, 0) = 0, u(x, 0) = 4(π−x), u(0, t) =
u(π, t) = 0.

Practical No. 20

Aim

To solve the Cauchy problem for wave equation using Mathematica.
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Problem

Write the differential equation ∂2u
∂t2

− ∂2u
∂x2 = 0 in Mathematica. Also find the solution of the

given equation with Cauchy data u(x, 0) = e−x2
, ut(x, 0) = 1.

Theory

The second-order linear partial differential equation is given by

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu = g.

where, u = u(x, y) and a,b,c,d,e,f,g are functions of x and y only. If g=0, then the equation
becomes homogeneous. The solution of second order partial differential equation possible
in Mathematica by command DSolve if principle part, i.e.a∂2u

∂x2 + b
∂2u
∂x∂y

+ c∂
2u

∂y2
have constant

coefficients and the non principle part is vanishing, i.e.0.

Algorithm

Step1: Write the partial differential equation taking D[u[x,y], {x,2}] as ∂2u
∂x2 and D[u[x,y],

{y,2}] as ∂2u
∂y2

;
Step2: Click the run command button to see the given differential equation in Mathemat-
ica;
Step3: The partial derivatives ∂2u

∂x2 and ∂2u
∂y2

looks like u(2,0) and u(0,2);
Step4: Write the program to solve the above equation. The command for partial differen-
tial equation in Mathematica is DSolve;
Step5: Write solution of the equation as DSolve[equation,dependent variable,{independent
variables}];
Step6: Click the run command button to see the solution of the given differential equation.

Program

The input and the output of the program is as following:

In[23]:= weqn = D[u[x, t], {t, 2}] == D[u[x, t], {x, 2}];

In[24]:= ic = {u[x, 0] == E^(-x^2), Derivative[0, 1][u][x, 0] == 1};

In[25]:= DSolveValue[{weqn, ic}, u[x, t], {x, t}]

Out[23]= u^(0,2)[x, t] == u^(2,0)[x, t]

Out[24]= {u[x, 0] == E^(-x^2), u^(0,1)[x, 0] == 1}
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Out[25]= {

(1/2) (E^(-(-t + x)^2) + E^(-(-t - x)^2)) + t, t >= 0

Indeterminate, True

}

Conclusion

The solution of homogeneous second order linear partial differential equation with constant
coefficients can be find out.

Exercise Problem

Write the differential equation ∂2u
∂t2

− 2∂2u
∂x2 in Mathematica. Also find the solution of the

given equation.

Practical No. 21

Aim

To solve the Homogeneous wave equation using Mathematica.

Problem

Write the differential equation ∂2u
∂t2

− 3∂2u
∂x2 = 0in Mathematica. Also, find the solution of

the given equation.

Theory

The second order linear partial differential equation is given by

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu = g.

where, u = u(x, y) and a,b,c,d,e,f,g are functions of x and y only. If g=0, then the equation
becomes homogeneous. The solution of second order partial differential equation possible
in Mathematica by command DSolve if principle part, i.e.a∂2u

∂x2 + b
∂2u
∂x∂y

+ c∂
2u

∂y2
have constant

coefficients and the non principle part is vanishing, i.e.0.
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Algorithm

Step1: Write the partial differential equation taking D[u[x,y], {x,2}] as ∂2u
∂x2 and D[u[x,y],

{y,2}] as ∂2u
∂y2

;
Step2: Click the run command button to see the given differential equation in Mathemat-
ica;
Step3: The partial derivatives ∂2u

∂x2 and ∂2u
∂y2

looks like u(2,0) and u(0,2);
Step4: Write the program to solve the above equation. The command for partial differen-
tial equation in Mathematica is DSolve;
Step5: Write solution of the equation as DSolve[equation,dependent variable,{independent
variables}];
Step6: Click the run command button to see the solution of the given differential equation.

Program

The input and the output of the program is as following:

In[20]:= eqn = D[u[x, t], {t, 2}] == 3 D[u[x, t], {x, 2}];

DSolveValue[eqn, u[x, t], {x, t}]

Out[20]= u^(0,2)[x, t] == 3 u^(2,0)[x, t]

Out[21]= c1[t - x/Sqrt[3]] + c2[t + x/Sqrt[3]]

Conclusion

The solution of homogeneous second order linear partial differential equation with constant
coefficients can be find out.

Exercise Problem

Write the differential equation ∂2u
∂t2

− 2∂2u
∂x2 = 0 in Mathematica. Also find the solution of

the given equation.

Practical No. 22

Aim

To solve the Non homogeneous wave equation using Mathematica.
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Problem

Write the differential equation ∂2u
∂t2

− 3∂2u
∂x2 = 1 in Mathematica. Also find the solution of

the given equation.

Theory

The second order linear partial differential equation is given by

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu = g.

where, u = u(x, y) and a,b,c,d,e,f,g are functions of x and y only. If g=0, then the equation
becomes homogeneous. The solution of second order partial differential equation possible
in Mathematica by command DSolve if principle part, i.e.a∂2u

∂x2 + b
∂2u
∂x∂y

+ c∂
2u

∂y2
have constant

coefficients and the non principle part is vanishing, i.e.0.

Algorithm

Step1: Write the partial differential equation taking D[u[x,y], {x,2}] as ∂2u
∂x2 and D[u[x,y],

{y,2}] as ∂2u
∂y2

;
Step2: Click the run command button to see the given differential equation in Mathemat-
ica;
Step3: The partial derivatives ∂2u

∂x2 and ∂2u
∂y2

looks like u(2,0) and u(0,2);
Step4: Write the program to solve the above equation. The command for partial differen-
tial equation in Mathematica is DSolve;
Step5: Write solution of the equation as DSolve[equation,dependent variable,{independent
variables}];
Step6: Click the run command button to see the solution of the given differential equation.

Program

The input and the output of the program is as following:

In[22]:= eqn = D[u[x, t], {t, 2}] == 1 + 3 D[u[x, t], {x, 2}];

DSolveValue[eqn, u[x, t], {x, t}]

Out[22]= u^(0,2)[x, t] == 1 + 3 u^(2,0)[x, t]

Out[23]= -x^2/6 + c1[t - x/Sqrt[3]] + c2[t + x/Sqrt[3]]
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Conclusion

The solution of homogeneous second order linear partial differential equation with constant
coefficients can be find out.

Exercise Problem

Write the differential equation 2∂2u
∂x2 − ∂2u

∂t2
= 1 in Mathematica. Also find the solution of

the given equation.

Practical No. 23

Aim

To solve the one dimensional heat equation using Mathematica.

Problem

Write the differential equation ∂u
∂t

− ∂2u
∂x2 = 0 in Mathematica. Also find the solution of the

given equation.

Theory

The second order linear partial differential equation is given by

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu = g.

where, u = u(x, y) and a,b,c,d,e,f,g are functions of x and y only. If g=0, then the equation
becomes homogeneous. The solution of second order partial differential equation possible
in Mathematica by command DSolve if principle part, i.e.a∂2u

∂x2 + b
∂2u
∂x∂y

+ c∂
2u

∂y2
have constant

coefficients and the non principle part is vanishing, i.e.0.

Algorithm

Step1: Write the partial differential equation taking D[u[x,y], {x,2}] as ∂2u
∂x2 and D[u[x,y],

{y,2}] as ∂2u
∂y2

;
Step2: Click the run command button to see the given differential equation in Mathemat-
ica;
Step3: The partial derivatives ∂2u

∂x2 and ∂2u
∂y2

looks like u(2,0) and u(0,2);
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Step4: Write the program to solve the above equation. The command for partial differen-
tial equation in Mathematica is DSolve;
Step5: Write solution of the equation as DSolve[equation,dependent variable,{independent
variables}];
Step6: Click the run command button to see the solution of the given differential equation.

Program

The input and the output of the program is as following:

In[26]:= heqn = D[u[x, t], t] == D[u[x, t], {x, 2}];

DSolveValue[heqn, u[x, t], {x, t}]

Out[26]= u^(0,1)[x, t] == u^(2,0)[x, t]

Out[27]= 1 + Cosh[c1 + x c2 + t c2] + Sinh[c1 + x c2 + t c2]

Conclusion

The solution of homogeneous second order linear partial differential equation with constant
coefficients can be find out.

Exercise Problem

Write the differential equation ∂u
∂t

− 2∂2u
∂x2 = 0 in Mathematica. Also find the solution of the

given equation.

Practical No. 24

Aim

To solve the Heat equation with constant boundary conditions using Mathematica.

Problem

Write the differential equation ∂u
∂t

− 9∂2u
∂x2 = 0 in Mathematica. Also find the solution of the

given equation with initial condition u(0, t) = 0, u(3, t) = 0, u(x, 0) = 20.
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Theory

The second order linear partial differential equation is given by

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu = g.

where, u = u(x, y) and a,b,c,d,e,f,g are functions of x and y only. If g=0, then the equation
becomes homogeneous. The solution of second order partial differential equation possible
in Mathematica by command DSolve if principle part, i.e.a∂2u

∂x2 + b
∂2u
∂x∂y

+ c∂
2u

∂y2
have constant

coefficients and the non principle part is vanishing, i.e.0.

Algorithm

Step1: Write the partial differential equation taking D[u[x,y], {x,2}] as ∂2u
∂x2 and D[u[x,y],

{y,2}] as ∂2u
∂y2

;
Step2: Click the run command button to see the given differential equation in Mathemat-
ica;
Step3: The partial derivatives ∂2u

∂x2 and ∂2u
∂y2

looks like u(2,0) and u(0,2);
Step4: Write the program to solve the above equation. The command for partial differen-
tial equation in Mathematica is DSolve;
Step5: Write solution of the equation as DSolve[equation,dependent variable,{independent
variables}];
Step6: Click the run command button to see the solution of the given differential equation.

Program

The input and the output of the program is as following:

In[56]:= Heqn = D[u[x, t], t] == 9 D[u[x, t], {x, 2}];

heatEqSoln = u[x, t] /.

DSolve[{Heqn, u[0, t] == 0, u[3, t] == 0, u[x, 0] == 20},

u[x, t], {x, t}][[1]] /. K[1] -> n

Out[56]= u^(0,1)[x, t] == 9 u^(2,0)[x, t]

Out[57]=

40 Sum[(-1 + (-1)^n) E^(-n^2 ^2 t) Sin[(n x)/3]/(n ), {n, 1, }]

Conclusion

The solution of homogeneous second order linear partial differential equation with constant
coefficients can be find out.
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Exercise Problem

Write the differential equation ∂u
∂t

− 9∂2u
∂x2 = 0 in Mathematica. Also find the solution of the

given equation with initial condition u(0, t) = 0, u(2, t) = 0, u(x, 0) = 10.

Practical No. 25

Aim

To solve the Heat equation with Dirichlet boundary conditions using Mathematica.

Problem

Write the differential equation ∂u
∂t
−9∂2u

∂x2 = 0 in Mathematica. Also find and plot the solution
of the given equation with initial condition u(0, t) = 0, u(3, t) = 0, u(x, 0) = x2 ∗ (3− x).

Theory

The second-order linear partial differential equation is given by

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu = g.

where, u = u(x, y) and a,b,c,d,e,f,g are functions of x and y only. If g=0, then the equation
becomes homogeneous. The solution of second order partial differential equation possible
in Mathematica by command DSolve if principle part, i.e.a∂2u

∂x2 + b
∂2u
∂x∂y

+ c∂
2u

∂y2
have constant

coefficients and the non principle part is vanishing, i.e.0.

Algorithm

Step1: Write the partial differential equation taking D[u[x,y], {x,2}] as ∂2u
∂x2 and D[u[x,y],

{y,2}] as ∂2u
∂y2

;
Step2: Click the run command button to see the given differential equation in Mathemat-
ica;
Step3: The partial derivatives ∂2u

∂x2 and ∂2u
∂y2

looks like u(2,0) and u(0,2);
Step4: Write the program to solve the above equation. The command for partial differen-
tial equation in Mathematica is DSolve;
Step5: Write solution of the equation as DSolve[equation,dependent variable,{independent
variables}];
Step6: Click the run command button to see the solution of the given differential equation.
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Program

The input and the output of the program is as following:

In[60]:= heatEq = D[u[x, t], t] == 9*D[u[x, t], {x, 2}];

f3[x_] = x^2*(3 - x);

heatEqSoln = u[x, t] /.

DSolve[

{heatEq, u[0, t] == 0, u[3, t] == 0, u[x, 0] == f3[x]},

u[x, t], {x, t}][[1]] /. K[1] -> n

Out[60]= u^(0,1)[x, t] == 9 u^(2,0)[x, t]

Out[62]=

Sum[(108 (1 + 2 (-1)^n) E^(-n^2 ^2 t) Sin[(n x)/3])/(n^3 ^3), {n, 1, }]

Conclusion

The solution of homogeneous second order linear partial differential equation with constant
coefficients can be find out.

Exercise Problem

Write the differential equation ∂u
∂t

− 9∂2u
∂x2 = 0 in Mathematica. Also find and plot the

solution of the given equation with initial condition u(0, t) = 1, u(5, t) = 0, u(x, 0) = Sinx.

Practical No. 26

Aim

To solve the Heat equation with Neumann boundary conditions using Mathematica.

Problem

Write the differential equation 4∂u
∂y
− ∂2u

∂x2 = 0 in Mathematica. Also find and plot the solution

of the given equation with initial condition ux(0, x) = 0, ux(10, x) = 0, u(x, 0) = x2∗(15−x).
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Theory

The second order linear partial differential equation is given by

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu = g.

where, u = u(x, y) and a,b,c,d,e,f,g are functions of x and y only. If g=0, then the equation
becomes homogeneous. The solution of second order partial differential equation possible
in Mathematica by command DSolve if principle part, i.e.a∂2u

∂x2 + b
∂2u
∂x∂y

+ c∂
2u

∂y2
have constant

coefficients and the non principle part is vanishing, i.e.0.

Algorithm

Step1: Write the partial differential equation taking D[u[x,y], {x,2}] as ∂2u
∂x2 and D[u[x,y],

{y,2}] as ∂2u
∂y2

;
Step2: Click the run command button to see the given differential equation in Mathemat-
ica;
Step3: The partial derivatives ∂2u

∂x2 and ∂2u
∂y2

looks like u(2,0) and u(0,2);
Step4: Write the program to solve the above equation. The command for partial differen-
tial equation in Mathematica is DSolve;
Step5: Write solution of the equation as DSolve[equation,dependent variable,{independent
variables}];
Step6: Click the run command button to see the solution of the given differential equation.

Program

The input and the output of the program is as following:
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In[63]:= heatEq = 4*D[u[x, t], t] == D[u[x, t], {x, 2}];

f3[x_] = x^2*(15 - x);

heatEqSoln = u[x, t] /.

DSolve[

{heatEq, Derivative[1, 0][u][0, t] == 0,

Derivative[1, 0][u][10, t] == 0,

u[x, 0] == f3[x]},

u[x, t], {x, t}][[1]] /. K[1] -> n

Out[63]= 4 u^(0,1)[x, t] == u^(2,0)[x, t]

Out[65]=

250 * (1/5) *

Sum[(60000 (-1 + (-1)^n) E^(-n^2 ^2 t/250) Cos[(n x)/10])/(n^4 ^4), {n, 1, }]

Conclusion

The solution of homogeneous second order linear partial differential equation with constant
coefficients can be find out.

Exercise Problem

Write the differential equation 4∂u
∂y
− ∂2u

∂x2 = 0 in Mathematica. Also find and plot the solution

of the given equation with initial condition ux(0, x) = 0, ux(10, x) = 0, u(x, 0) = x4∗(15−x).

Practical No. 27

Aim

To solve the Heat equation with mixed boundary conditions using Mathematica.

Problem

Write the differential equation ∂u
∂t
−9∂2u

∂x2 = 0 in Mathematica. Also find and plot the solution
of the given equation with initial condition u(0, t) = 0, ut(3, t) = 0, u(x, 0) = x ∗ (6− x).

264



Practical No. 27 Partial Differential Equations

Theory

The second-order linear partial differential equation is given by

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu = g.

where, u = u(x, y) and a,b,c,d,e,f,g are functions of x and y only. If g=0, then the equation
becomes homogeneous. The solution of second order partial differential equation possible
in Mathematica by command DSolve if principle part, i.e.a∂2u

∂x2 + b
∂2u
∂x∂y

+ c∂
2u

∂y2
have constant

coefficients and the non principle part is vanishing, i.e.0.

Algorithm

Step1: Write the partial differential equation taking D[u[x,y], {x,2}] as ∂2u
∂x2 and D[u[x,y],

{y,2}] as ∂2u
∂y2

;
Step2: Click the run command button to see the given differential equation in Mathemat-
ica;
Step3: The partial derivatives ∂2u

∂x2 and ∂2u
∂y2

looks like u(2,0) and u(0,2);
Step4: Write the program to solve the above equation. The command for partial differen-
tial equation in Mathematica is DSolve;
Step5: Write solution of the equation as DSolve[equation,dependent variable,{independent
variables}];
Step6: Click the run command button to see the solution of the given differential equation.

Program

The input and the output of the program is as following:

In[63]:= heatEq = 4*D[u[x, t], t] == D[u[x, t], {x, 2}];

f3[x_] = x^2*(15 - x);

heatEqSoln = u[x, t] /.

DSolve[

{heatEq, Derivative[1, 0][u][0, t] == 0,

Derivative[1, 0][u][10, t] == 0,

u[x, 0] == f3[x]},

u[x, t], {x, t}][[1]] /. K[1] -> n

Out[63]= 4 u^(0,1)[x, t] == u^(2,0)[x, t]

Out[65]=

250 * (1/5) *

Sum[(60000 (-1 + (-1)^n) E^(-n^2 ^2 t/250) Cos[(n x)/10])/(n^4 ^4), {n, 1, }]

265



Partial Differential Equations Practical No. 27

Conclusion

The solution of homogeneous second order linear partial differential equation with constant
coefficients can be find out.

Exercise Problem

Write the differential equation ∂u
∂t
−9∂2u

∂x2 = 0 in Mathematica. Also find and plot the solution
of the given equation with initial condition u(0, t) = 0, ut(1, t) = 0, u(x, 0) = x ∗ (10− x).
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Chapter 7

Ring Theory

Practical No. 1

Aim

To solve the given problem with the help of PYTHON.

Problem

Write a program which takes input of an integer n greater than 1. Then it prints the
additive and multiplicative inverses of each element of the ring Zn[i]. Run the program for
n = 5.

Theory

The additive inverse z2 of z1 ∈ Zn[i] is defined as

z1 + z2 = 0,

where addition and multiplication are to be performed in modulo n arithmetic. The additive
inverse z2 of z1 is denoted by −z1. Similarly, the multiplicative inverse z3 of non-zero
z1 ∈ Zn[i] is defined as

z1z3 = 1,

The multiplicative inverse z3 of z1 is denoted by z−1.

Algorithm

Step 1: Prompt user to give input of integer n greater than 1;

Step 2: Check if n is a positive integer greater than 1. If not, show an error and exit;
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Step 3: Define a list zn and save elements of Zn in it;

Step 4: Define a list zni and save elements of Zn[i] in it;

Step 5: Define a list inverses to save element, additive inverse and multiplicative inverse
triplet;

Step 6: Run a loop for each z1 in Zn[i];

Step 7: Define additive Inverse and multiplicativeInverse to save inverse values;

Step 8: Run an inner loop for each z2 in Zn[i];

Step 9: At each iteration, if z1 + z2 = 0, save z2 to additiveInverse;

Step 10: Also, if z1z2 = 1, save z2 to multiplicativeInverse. If both inverses found, exit the
inner loop;

Step 11: Save (element, additiveInverse) pair or (element, additiveInverse, multiplica-
tiveInverse) triplet in list inverses;

Step 12: Exit the outer loop;

Step 13: Print the inverses of elements of Zn[i].

Program

The following PYTHON script implements the algorithm.

#Step 1

n = int(input(‘n = ’))

#Step 2

if n <= 1:

raise ValueError(‘n must be an integer greater than 1.’)

#Step 3

zn = list(range(n))

#Step 4

zni = [complex(a, b) for a in zn for b in zn]

#Step 5

inverses = []

#Step 6

for z1 in zni:

#Step 7

additiveInverse = None

multiplicativeInverse = None

#Step 8

for z2 in zni:
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#Step 9

summation = z1 + z2

result = complex(summation.real % n, summation.imag % n)

if result == 0:

additiveInverse = z2

#Step 10

if z1 != 0:

product = z1*z2

result = complex(product.real % n, product.imag % n)

if result == 1:

multiplicativeInverse = z2

#Step 11

if (additiveInverse is not None) and (multiplicativeInverse is not None):

break;

#Step 12

if(multiplicativeInverse is not None):

inverses.append((z1, additiveInverse, multiplicativeInverse))

else:

inverses.append((z1, additiveInverse))

#Step 13

for elem in inverses:

if(len(elem) == 3):

z1, z2, z3 = elem

print(f‘-{z1} = {z2}, \t{z1}^-1 = {z3}’)

else:

z1, z2 = elem

if z1== 0:

print(f‘-{z1} = {z2}’)

else:

print(f‘-{z1} = {z2}, \t{z1}^-1 does not exist.’)

Output

The output of the program for various inputs is as follows:
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Exercise Problem

Write a program which takes input of an integer n greater than 1. Then it prints the
additive and multiplicative inverses of each element of the ring Zn. Run the program for
n = 2, 4, 5, 8.
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Practical No. 2

Aim

To solve the given problem with the help of PYTHON.

Problem

Write a program which takes input of an integer n greater than 1. Then it prints all the
zero divisors of the ring Zn. If there are no zero divisors, print the same. Run the program
for n = 3, 8, 17, 30.

Theory

A non-zero integer k ∈ Zn is called a zero divisor, if there exists a non-zero integer m ∈ Zn

such that

km mod n = 0.

Algorithm

Step 1: Prompt user to give input of integer n greater than 1;

Step 2: Check if n is a positive integer greater than 1. If not, show an error and exit;

Step 3: Define a list zn and save elements of Zn in it;

Step 4: Define a list zeroDivisors to save zero divisors;

Step 5: Run a loop for each k in Zn;

Step 6: If k is zero, then continue to next iteration;

Step 7: Otherwise, run an inner loop for each m in Zn;

Step 8: At each iteration of inner loop, if m is not zero and km mod n = 0, save k to list
zeroDivisors and exit the inner loop;

Step 9: Exit the outer loop;

Step 10: Print the zero divisors of elements of Zn.
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Program

The following PYTHON script implements the algorithm.

#Step 1

n = int(input(‘n = ’))

#Step 2

if n <= 1:

raise ValueError(‘n must be an integer greater than 1.’)

#Step 3

zn = list(range(n))

#Step 4

zeroDivisors = []

#Step 5

for k in zn:

#Step 6

if k == 0:

continue

#Step 7

for m in zn:

#Step 8

if m != 0 and k*m%n == 0:

zeroDivisors.append(k)

break

#Step 10

if len(zeroDivisors) == 0:

print(f‘Z{n} has no zero divisors.’)

else:

zeroDivisorsStr = ’, ’.join([str(x) for x in zeroDivisors ])

print(f‘Zero divisors of Z{n} = {zeroDivisorsStr}’)

Output

The output of the program for various inputs is as follows:

Exercise Problem

Write a program which takes input of an integer n greater than 1. Then it prints all the zero
divisors of the ring Zn[i]. If there are no zero divisors, print the same. Run the program
for n = 3, 5.
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Practical No. 3

Aim

To solve the given problem with the help of PYTHON.

Problem

Write a program which takes input of an integer n greater than 1. Then it prints all the
units of the ring Zn[i]. If there are no units, print the same. Run the program for n = 5, 7.

Theory

A non-zero number z ∈ Zn[i] is called a unit, if it has a multiplicative inverse.

Algorithm

Step 1: Prompt user to give input of integer n greater than 1;

Step 2: Check if n is a positive integer greater than 1. If not, show an error and exit;

Step 3: Define a list zn and save elements of Zn in it;

Step 4: Define a list zni and save elements of Zn[i] in it;

Step 5: Define a list units to save units;

Step 6: Run a loop for each z1 in Zn;

Step 7: If z1 is zero, then continue to next iteration;

Step 8: Otherwise, run an inner loop for each z2 in Zn[i];

Step 9: At each iteration of inner loop, if z2 is not zero and z1z2 = 1, save z1 to list units
and exit the inner loop;

Step 10: Exit the outer loop;

Step 11: Print the units of elements of Zn[i].
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Program

The following PYTHON script implements the algorithm.

#Step 1

n = int(input(‘n = ’))

#Step 2

if n <= 1:

raise ValueError(‘n must be an integer greater than 1.’)

#Step 3

zn = list(range(n))

#Step 4

zni = [complex(a, b) for a in zn for b in zn]

#Step 5

units = []

#Step 6

for z1 in zni:

#Step 7

if z1 == 0:

continue

#Step 8

else:

for z2 in zni:

#Step 9

product = z1*z2

result = complex(product.real % n, product.imag % n)

if result == 1:

units. append(z1)

break

#Step 11

if len(units) == 0:

print(f‘Z{n}[i] has no units.’)

else:

unitsStr = ‘, ’.join([str(x) for x in units ])

print(f‘units of Z{n}[i] = {unitsStr}’)

Output

The output of the program for various inputs is as follows:

Exercise Problem

Write a program which takes input of an integer n greater than 1. Then it prints all the units
of the ring Zn. If there are no units, print the same. Run the program for n = 5, 8, 15, 47.
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Practical No. 4

Aim

To solve the given problem with the help of PYTHON.

Problem

Write a program which takes input of an integer n greater than 1. Then it prints all
the characteristic of the ring Zn using definition of characteristic. Run the program for
n = 3, 8, 17, 30.

Theory

The characteristic of a ring R is the least positive integer k such that kx = 0 for all x in
R. If no such integer exists, we say that R has characteristic 0.

Algorithm

Step 1: Prompt user to give input of integer n greater than 1;

Step 2: Check if n is a positive integer greater than 1. If not, show an error and exit;

Step 3: Define a list zn and save elements of Zn in it;

Step 4: Define characteristic variable charZn and initialize it to 1;

Step 5: Run an infinite while loop;

Step 6: Define another variable charFound and initialize it to True;

Step 7: At each iteration, run an inner loop for each x in Zn;

Step 8: At each iteration of inner loop, if char (Zn)x mod n ̸= 0, increase charZn, set
charFound to False and exit inner loop;

Step 9: If charFound is true, exit the outer loop;

Step 10: Print the characteristic of Zn.
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Program

The following PYTHON script implements the algorithm.

#Step 1

n = int(input(‘n = ’))

#Step 2

if n <= 1:

raise ValueError(‘n must be an integer greater than 1.’)

#Step 3

zn = list(range(n))

#Step 4

charZn = 1

#Step 5

while True:

#Step 6

charFound = True

#Step 7

for x in zn:

#Step 8

if charZn*x%n != 0:

charZn = charZn + 1

charFound = False

break

#Step 9

if charFound:

break

#Step 11

print(f‘char(Z{n}) = {charZn}’)

Output

The output of the program for various inputs is as follows:
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Exercise Problem

Write a program which takes input of an integer n greater than 1. Then it prints all
the characteristic of the ring Zn[i] using definition of characteristic. Run the program for
n = 5, 12, 25, 60.
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Practical No. 5

Aim

To solve the given problem with the help of PYTHON.

Problem

Write a program which takes input of an integer n greater than 1. It also takes input of
a positive integer m. Then, it prints the order of the subring mZn. Run the program for
(n,m) = (6, 2), (12, 5), (15, 9).

Theory

For any m ∈ Zn the subring mZn of the ring Zn is defined as

mZn = {mk mod n : k ∈ Zn} .

The order of a subring is same as its cardinality.

Algorithm

Step 1: Prompt user to give input of integer n greater than 1;

Step 2: Check if n is a positive integer greater than 1. If not, show an error and exit;

Step 3: Prompt user to give input of a positive integer n;

Step 4: Check if m is a positive integer. If not, show an error and exit;

Step 5: Define a list mzn and save elements of mZn in it;

Step 6: Convert the list mzn to a set to remove duplicate elements in the list mzn;

Step 7: Convert mzn back to a list;

Step 8: Print the order of mZn.

Program

The following PYTHON script implements the algorithm.
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#Step 1

n = int(input(‘n = ’))

#Step 2

if n <= 1:

raise ValueError(‘n must be an integer greater than 1.’)

#Step 3

m = int(input(‘m = ’))

#Step 4

if m <= 0:

raise ValueError(‘m must be positive integer.’)

#Step 5

mzn = [m*k%n for k in range(n)]

#Step 6

mzn = set(mzn)

#Step 7

mzn = list(mzn)

#Step 8

print(f‘|{m}Z{n}| = {len(mzn)}.’)

Output

The output of the program for various inputs is as follows:

Exercise Problem

Write a program which takes input of an integer n greater than 1. It also takes input of
a positive integer m. Then, it prints the multiplicative identity of mZn as a subring of of
Zn. If multiplicative identity does not exist, it prints suitable message. Run the program
for (n,m) = (6, 2), (12, 5), (15, 9).
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Practical No. 6

Aim

To solve the given problem with the help of PYTHON.

Problem

Write a program which takes input of an integer n greater than 1. Then it prints if Zn[i] is
an integral domain or not. Run the program for n = 4, 7, 13, 19.

Theory

A commutative ring with unity is called an integral domain if there are no zero divisors in
it.

Algorithm

Step 1: Prompt user to give input of integer n greater than 1;

Step 2: Check if n is a positive integer greater than 1. If not, show an error and exit;

Step 3: Define a list zn and save elements of Zn in it;

Step 4: Define a list zni and save elements of Zn[i] in it;

Step 5: Define a variable integralDomain and set it to True;

Step 6: Run a loop for each z1 in Zn[i];

Step 7: If z1 is zero, then continue to next iteration;

Step 8: Otherwise, run an inner loop for each z2 in Zn[i];

Step 9: If z2 is zero, then continue to next iteration of inner loop;

Step 10: Otherwise, if z1z2 = 0, set variable integralDomain to false and exit the inner
loop;

Step 11: If variable integralDomain is false, exit the outer loop;

Step 12: Print the result.
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Program

The following PYTHON script implements the algorithm.

#Step 1

n = int(input(‘n = ’))

#Step 2

if n <= 1:

raise ValueError(‘n must be an integer greater than 1.’)

#Step 3

zn = list(range(n))

#Step 4

zni = [complex(a, b) for a in zn for b in zn]

#Step 5

integralDomain = True

#Step 6

for z1 in zni:

#Step 7

if z1 == 0:

continue

#Step 8

for z2 in zni:

#Step 9

if z2 == 0:

continue

#Step 10

product = z1*z2

result = complex(product.real % n, product.imag % n)

if result == 0:

integralDomain = False

break

#Step 11

if not integralDomain:

break

#Step 13

if integralDomain:

print(f‘Z{n}[i] in an integral domain.’)

else:

print(f‘Z{n}[i] in not an integral domain.’)

Output

The output of the program for various inputs is as follows:
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Exercise Problem

Write a program which takes input of an integer n greater than 1. Then it prints if Zn[i] is
a field or not. Run the program for n = 4, 7, 13, 19.
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Practical No. 7

Aim

To solve the given problem with the help of PYTHON.

Problem

Write a program which takes input of an integer n greater than 1. Then it prints if
(x+y)n = xn+yn holds for all x, y in the ring Zn or not. Run the program for n = 4, 7, 15, 29.

Theory

In general (x + y)n = xn + yn does not hold. However if underlying ring is of prime
characteristic, then the relation holds for all the elements of ring Zn.

Algorithm

Step 1: Prompt user to give input of integer n greater than 1;

Step 2: Check if n is a positive integer greater than 1. If not, show an error and exit;

Step 3: Define a list zn and save elements of Zn in it;

Step 4: Define a variable holds and set it to True;

Step 5: Run a loop for each x in Zn;

Step 6: Run an inner loop for each y in Zn;

Step 7: At each iteration of inner loop, if relation does not hold, set holds to False and
exit inner loop;

Step 8: If relation does not hold, exit the outer loop;

Step 9: Print the result.

Program

The following PYTHON script implements the algorithm.

#Step 1

n = int(input(‘n = ’))

#Step 2

if n <= 1:
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raise ValueError(‘n must be an integer greater than 1.’)

#Step 3

zn = list(range(n))

#Step 4

holds = True

#Step 5

for x in zn:

#Step 6

for y in zn:

#Step 7

if ((x + y)**n)%n != (x**n + y**n)%n:

holds = False

break

#Step 8

if not holds:

break

#Step 9

if holds:

print(f‘The relation (x + y)^{n} = x^{n} + y^{n} holds for all x, y in Z{n}.’)

else:

print(f‘The relation (x + y)^{n} = x^{n} + y^{n} does not hold for all x, y in Z{n}.’)

Output

The output of the program for various inputs is as follows:

Exercise Problem

Write a program which takes input of an integer n greater than 1. It also takes input of a
positive integer m. Then it prints if (x+ y)n

m
= xn

m
+ yn

m
holds for all x, y in the ring Zn

or not. Run the program for (n,m) = (4, 3), (7, 5), (15, 5), (29, 2).
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Practical No. 8

Aim

To solve the given problem with the help of PYTHON.

Problem

Write a program which takes input of an integer n greater than 1 and two positive integers
p and q. Then it finds and prints all the principal ideals ⟨a⟩ of Zn such that ⟨p⟩+ ⟨q⟩ = ⟨n⟩.
Run the program for (n, p, q) = (20, 4, 10), (65, 10, 25).

Theory

An ideal I of a commutative ring R is called a principal ideal generated by a of R if

I = {ra : r ∈ R} .

I is denoted by ⟨a⟩.

Algorithm

Step 1: Prompt user to give input of integer n greater than 1;

Step 2: Check if n is a positive integer greater than 1. If not, show an error and exit;

Step 3: Prompt user to give input of positive integer p;

Step 4: Check if p is a positive integer. If not, show an error and exit;

Step 5: Prompt user to give input of positive integer q;

Step 6: Check if q is a positive integer. If not, show an error and exit;

Step 7: Define a list zn and save elements of Zn in it;

Step 8: Define a list pzn and save elements of principal ideal ⟨p⟩ in it;

Step 9: Define a list qzn and save elements of principal ideal ⟨q⟩ in it;

Step 10: Define a list pPlusqZn and save elements of subring ⟨p⟩+ ⟨q⟩ in it;

Step 11: Define a list foundA to save generators;

Step 12: Run a loop for each a in Zn;

Step 13: Define a list azn and save elements of principal ideal ⟨a⟩ in it;
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Step 14: If ⟨p⟩+ ⟨q⟩ and ⟨a⟩ are same, save a in the list foundA;

Step 15: Print the zero divisors of elements of Zn.

Program

The following PYTHON script implements the algorithm.

#Step 1

n = int(input(‘n = ’))

#Step 2

if n <= 1:

raise ValueError(‘n must be an integer greater than 1.’)

#Step 3

p = int(input(‘p = ’))

#Step 4

if p <= 0:

raise ValueError(‘p must be a positive integer.’)

#Step 5

q = int(input(‘q = ’))

#Step 6

if q <= 0:

raise ValueError(‘q must be a positive integer.’)

#Step 7

zn = list(range(n))

#Step 8

pzn = list(set([p*k%n for k in zn]))

#Step 9

qzn = list(set([q*k%n for k in zn]))

#Step 10

pPlusqZn = sorted(set([(pk + qk)%n for pk in pzn for qk in qzn]))

#Step 11

foundA = []

#Step 12

for a in zn:

#Step 13

azn = sorted(set([a*k%n for k in zn]))

#Step 14

if pPlusqZn == azn:

foundA.append(a)
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#Step 15

if len(foundA) == 0:

print(f‘No a in Z{n} exists such that <p> + <q> = <a>.’)

else:

aStr = ‘ = ’.join([f’<{str(a)}>’ for a in foundA])

print(f‘In Z{n}, we have <{p}> + <{q}> = {aStr}.’)

Output

The output of the program for various inputs is as follows:

Exercise Problem

Write a program which takes input of an integer n greater than 1 and two positive integers
p and q. Then it finds and prints all the principal ideals ⟨a⟩ of Zn such that ⟨p⟩⟨q⟩ = ⟨n⟩.
Run the program for (n, p, q) = (12, 4, 6), (40, 2, 15).
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Practical No. 9

Aim

To solve the given problem with the help of PYTHON.

Problem

Write a program which takes input of an integer a, two integers m and n greater than 1 and
less than 100. Then it prints if the mapping f(x) = ax from Zm to Zn is a homomorphism
or not. Run the program for (a,m, n) = (5, 4, 10), (3, 4, 12).

Theory

A ring homomorphism f from a ring R to a ring S is a mapping from R to S that preserves
the two ring operations; that is, for all a, b in R,

f(a+ b) = f(a) + f(b), and f(ab) = f(a)f(b).

Algorithm

Step 1: Prompt user to give input of integer a;

Step 2: Prompt user to give input of integer m greater than 1 and less than 100;

Step 3: Check if m is a positive integer greater than 1 and less than 100. If not, show an
error and exit;

Step 4: Prompt user to give input of integer n greater than 1 and less than 100;

Step 5: Check if n is a positive integer greater than 1 and less than 100. If not, show an
error and exit;

Step 6: Define a list zm and save elements of Zn in it;

Step 7: Define a variable isHomomorphism and save elements of Zm in it;

Step 8: Define variables x and y to hold the test points and set them to zero;

Step 9: Run a loop for each x in Zm;

Step 10: At each iteration, run an inner loop for each y in Zm;

Step 11: At each iteration of inner loop, calculate f(x), f(y), x+ y, f(x+ y);

Step 12: If f(x + y) = f(x) + f(y) does not hold, set isHomomorphism to False and exit
inner loop;

290



Practical No. 9 Ring Theory

Step 13: Next calculate f(x), f(y), xy, f(xy);

Step 14: If f(xy) = f(x)f(y) does not hold, set isHomomorphism to False and exit inner
loop;

Step 15: If isHomomorphism is false, exit outer loop;

Step 16: Print the result.

Program

The following PYTHON script implements the algorithm.

#Step 1

a = int(input("a = "))

#Step 2

m = int(input("m = "))

#Step 3

if (not (1 < m < 100)):

raise ValueError(f"m should be a positive integer greater than 1 and less than 100.")

#Step 4

n = int(input("n = "))

#Step 5

if (not (1 < n < 100)):

raise ValueError(f"n should be a positive integer greater than 1 and less than 100.")

#Step 6

zm = list(range(0, m))

#Step 7

isHomomorphism = True

#Step 8

x = 0

y = 0

#Step 9

for x in zm:

#Step 10

for y in zm:

#Step 11

phi_x = a*x % n

phi_y = a*y % n

xPlusy = (x + y) % m

phi_xy = a*xPlusy % n

#Step 12

if phi_xy != (phi_x + phi_y) % n:

#Step 13

isHomomorphism = False

break
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#Step 14

phi_x = a*x % n

phi_y = a*y % n

xy = (x*y) % m

phi_xy = a*xy % n

#Step 15

if phi_xy != (phi_x*phi_y) % n:

#Step 16

isHomomorphism = False

break

#Step 17

if not isHomomorphism:

break

#Step 18

if isHomomorphism:

print(f‘f(x) = {a if a!=1 and a!=0 else ""}{"x" if a!=0 else 0} is a homomorphism from Z{m} to Z{n}.’)

else:

print(f‘f(x) = {a if a!=1 and a!=0 else ""}{"x" if a!=0 else 0} is NOT a homomorphism from Z{m} to Z{n}. It failed to satisfy the condition of homomorphism for x = {x} and y = {y}.’)

Output

The output of the program for various inputs is as follows:

Exercise Problem

Write a program which takes input of an integer a, two integers m and n greater than 1 and
less than 100. Then it prints if the mapping f(x) = xa from Zm to Zn is a homomorphism
or not. Run the program for (a,m, n) = (2, 2, 2), (4, 6, 12).
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Practical No. 10

Aim

To solve the given problem with the help of PYTHON.

Problem

Write a program which implements synthetic division for dividing polynomial p(x) = anx
n+

an−1x
n−1 + · · · + a1x + a0 of degree 2 or more by d(x) = x − a. Run the program for

p(x) = 2x5 − 9x4 − 3x2 + 23 and d(x) = x+ 2.

Theory

To divide a0 + a1x+ a2x
2 + . . .+ anx

n by x− a, follow these steps:

1. Write down the coefficients an, an−1, . . . , a1, a0 in decreasing powers of x.

a an an−1 . . . a0
aan . . . . . .

an an−1 + aan . . . . . .

2. Set up the division by writing a from x− a to the left of the coefficients.

3. Bring down the leading coefficient, an, as the starting value for the quotient.

4. Multiply this starting value by a and write the result under the next coefficient.

5. Add the result to the next coefficient, and repeat this process across all coefficients.

Algorithm

Step 1: Prompt user to give input of degree n of p(x);

Step 2: Check if n is a positive integer greater than 1. If not, show an error and exit;

Step 3: Define a list coefficients to save coefficients of p(x);

Step 4: Run a loop from i = n to i = 0 to take input of coefficient of xi in p(x);

Step 5: At each iteration, verify that coefficient of xn is non-zero. If not, show error and
exit;

Step 6: Otherwise save the coefficient to the list of coefficients and exit the loop;
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Step 7: Prompt user to give input of a of d(x);

Step 8: Define a list quotient to save coefficients of quotient polynomial. Append it the
coefficient of xn;

Step 9: Run a loop for i = 1 to i = n − 1. At each iteration, calculate the coefficient of
xn−1−i of the quotient;

Step 10: Calculate the remainder of division of p(x) by d(x);

Step 11: Print the results.

Program

The following PYTHON script implements the algorithm.

# Function to convert coefficients to polynomial

def polynomialStr(coefficients):

n = len(coefficients) - 1

polynomial = ’’

for idx, coefficient in enumerate(coefficients):

if idx == 0:

if n == 1:

if coefficient == 1:

polynomial += f’x’

elif coefficient == -1:

polynomial += f’x’

elif coefficient != 0:

polynomial += f’{coefficient}x’

else:

if coefficient == 1:

polynomial += f’x^{n}’

elif coefficient == -1:

polynomial += f’-x^{n}’

elif coefficient != 0:

polynomial += f’{coefficient}x^{n}’

elif idx == n-1:

if coefficient == 1:

polynomial += f’ + x’

elif coefficient == -1:

polynomial += f’ - x’

elif coefficient > 0:

polynomial += f’ + {coefficient}x’

elif coefficient < 0:

polynomial += f’ - {-coefficient}x’

elif idx == n:
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if coefficient > 0:

polynomial += f’ + {coefficient}’

elif coefficient < 0:

polynomial += f’ - {-coefficient}’

else:

if coefficient == 1:

polynomial += f’ + x^{n - idx}’

elif coefficient == -1:

polynomial += f’ - x^{n - idx}’

elif coefficient > 0:

polynomial += f’ + {coefficient}x^{n - idx}’

elif coefficient < 0:

polynomial += f’ - {-coefficient}x^{n - idx}’

return polynomial

#Step 1

n = int(input(‘n = ’))

#Step 2

if n <= 2:

raise ValueError(’The degree of the polynomial must be an integer greater than 1.’)

#Step 3

coefficients = []

#Step 4

for i in range(n, -1, -1):

coefficient = int(input(f‘a{i} = ’))

#Step 5

if i == n and coefficient == 0:

raise ValueError(‘Coefficient of x^n cannot be zero.’)

#Step 6

coefficients.append(coefficient)

#Step 7

a = int(input(‘a = ’))

#Step 8

quotient = [coefficients[0]]

#Step 9

for i in range(1, n):

quotient.append(coefficients[i] + a*quotient[i - 1])

#Step 10

remainder = coefficients[-1] + a*quotient[-1]

#Step 11

px = polynomialStr(coefficients)

qx = polynomialStr(quotient)

dx = polynomialStr([1, a])

print(f‘p(x) = {px}’)
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print(f‘d(x) = {dx}’)

print(f‘q(x) = {qx}’)

print(f‘r = {remainder}’)

Output

The output of the program for various inputs is as follows:

Exercise Problem

Write a program which implements remainder theorem and prints if d(x) = x − a is a
factor of a given polynomial p(x) of degree more than 1. Run the program for p(x) =
2x3 − 9x2 + x+ 12 and d(x) = x− 4.
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Complex Analysis

Practical No. 1

Aim

To find the sum of two complex numbers using the MATLAB code.

Problem

Find the sum of two complex numbers z1 = 2 + 3i and z2 = 4 + 8i.

Algorithm

Step1: Write z1 = 2 + 1i∗3;
Step2: Press Enter
Step3: Write z2 = 4 + 1i∗8;
Step4: Press Enter
Step5: z = z1 + z2.

Matlab Code

z1=2+1i*3;

z2=4+1i*8;

z=z1+z2

Output

z =

297



Complex Analysis Practical No. 2

6.0000 +11.0000i

Exercise Problems

1. Find the sum of two complex numbers z1 = 5 + 6i and z2 = 7 + 9i.

2. Find the sum of two complex numbers z1 = 15 + 61i and z2 = 17 + 90i.

Practical No. 2

Aim

To find the product of two complex numbers using MATLAB code.

Problem

Find the product of z1 = 3 + 5i and z2 = 4 + 6i.

Algorithm

Step1: z1 = 3 + 1i∗5;
Step2: Press Enter
Step3: z2 = 4 + 1i∗6;
Step4: Press Enter
Step5: z = z∗1z2
Step6: Press Enter
Step7: To display output, type fprintf(’The product of two complex number is: %s \n′,
num2str(z)).

Matlab Code

z1=2+1i*3;

z2=3+1i*4;

z=z1*z2;

fprintf(’The product of two complex number is:%s\n’,num2str(z))

Output

The product of two complex number is:-6+17i
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Exercise Problems

1. Find the product of z1 = 13 + 50i and z2 = 40 + 16i.

2. Find the product of z1 = 25 + 20i and z2 = 30 + 6i.

Practical No. 3

Aim

Use MATLAB code to find the Angle and Modulus of the complex Number.

Problem

Find the modulus and argument of the complex number z = 3 + 4i.

Algorithm

Step1: Write x = 3;
Step2: Press Enter
Step3: Write y = 4;
Step4: Write z = x = 1i∗y,
Step5: Press Enter
Step6: Write r = abs(z);
Step7: Press Enter
Step8: Write theta = atan2(x, y).

Matlab Code

x=3;

y=4;

z=x+1i*y;

r=abs(z)

theta=atan2(x,y)

Output

r =

5
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theta =

0.6435

Exercise Problems

1. Find the modulus and argument of the complex number z = 20 + 10i.

2. Find the modulus and argument of the complex number z = 10 + 2i.

Practical No. 4

Aim

Convert the cartesian coordinate to a polar coordinate of a complex-valued function Using
MATLAB code.

Problem

Convert the complex-valued function f(z) = 2 + 5i to a polar form.

Algorithm

Step1: Write x = 2;
Step2: Press Enter
Step3: Write y = 5;
Step4: Press Enter
Step5: Write [theta, r] = cart2pol(x, y).

Matlab Code

x=2;

y=5;

[theta, r]=cart2pol(x,y)

Output

theta =

1.1903
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r =

5.3852

Exercise Problems

1. Convert the complex-valued function f(z) = 4 + 8i to a polar form.

2. Convert the complex-valued function f(z) = 16 + 12i to a polar form.

Practical No. 5

Aim

Using the MATLAB code to find the complex conjugate of a complex number.

Problem

Find the complex conjugate of z = 3 + 5i.

Algorithm

Step1: Write z = 3 + 1i∗5;
Step2: Press Enter
Step3: Write zc = conj(z);
Step4: Press Enter
Step5: To display the output, type fprintf(′The conjugate of z is: %s\n′, num2str(zc)).

Matlab Code

z=3+1i*5;

zc=conj(z);

fprintf(‘The conjugate of z is: %s\n’,num2str(zc))

Output

The conjugate of z is: 3-5i
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Exercise Problems

1. Find the complex conjugate of z = 13 + 15i.

2. Find the complex conjugate of z = 23 + 25i.

Practical No. 6

Aim

Find the roots of unity and plot the graph of a complex function by using MATLAB code.

Problem

To find the fifth root of unity.

Algorithm

Step1: Write p = [1, 0, 0, 0, 0,−1];
Step2: Pres Enter
Step3: z = roots(p);
Step4: Press Enter
Step5: To plot the graph by using the pre-defined MATLAB code i.e.plot(z, ”∗”);
Step6: Write axis equal to plot the graph on the same length of the x-axis and y-axis.
Step7: Write grid on to show the grid line on the graph.
Step8: Press Enter
Step9: Write xlabel(Re(z))
Step10: Press Enter
Step11: Write ylabel(Im(z))

Matlab Code

p=[1,0,0,0,0,-1];

z=roots(p);

plot(z,"*")

axis equal

grid on

xlabel("Re(z)")

ylabel("Im(z)")

302



Practical No. 7 Complex Analysis

Output

z =

-0.8090 + 0.5878i

-0.8090 - 0.5878i

0.3090 + 0.9511i

0.3090 - 0.9511i

1.0000 + 0.0000i

Figure 8.1: Graph of fifth root of unity

Exercise Problems

1. Find the sixth root of unity.

2. Find the third root of unity.

Practical No. 7

Aim

Plot the graph of the complex-valued function, using MATLAB code.
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Problem

Plot the graph of the complex-valued function f(z) = zez.

Algorithm

Step1: Write z = linspace(0, 4∗pi, 200);
Step2: Press Enter
Step3: Write w = z∗exp(1i∗z);
Step4: Press Enter
Step5: To plot the graph by using the pre-defined MATLAB code i.e. plot(z, ”∗”);
Step6: Write axis equal to plot the graph on the same length of the x-axis and y-axis.
Step7: Write grid on to show the grid line on the graph.
Step8: Press Enter
Step9: Write xlabel(Re(w));
Step10: Press Enter
Step11: Write ylabel(Im(w)).

Matlab Code

z = linspace(0,4*pi,200);

w = z.*exp(1i*z);

plot(w,"*")

axis equal

grid on

xlabel("Re(w)")

ylabel("Im(w)")
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Output

Figure 8.2: Graph of zez

Exercise Problems

1. Plot the graph of the complex-valued function f(z) = z2ez.

2. Plot the graph of the complex-valued function f(z) = ez.

Practical No. 8

Aim

To find the poles and residues of the complex-valued function by using MATLAB code.

Problem

Find the poles and corresponding residues of the function f(z) = 4z+3
2z3−3.4z2+1.98z−0.406

.

Algorithm

Step1: In the complex-valued function f(z), p(z) = 4z+3, q(z) = 2z3−3.4z2+1.98z−0.406
Step2: Write p = [4, 3]; and press the enter key. Next, write q = [2,−3.4, 1.98,−0.406];
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and press the enter key.
Step3: To find the residue and poles by using the pre-defined residue MATLAB command
i.e. [r, a, k] = residue(p, q); and then press Enter. Here, r, a, and k denote the residue,
poles, and the constant term of the function f(z).

Matlab Code

p=[4 3];

q=[2 -3.4 1.98 -0.406];

[r,a,k]=residue(p,q)

Output

r =

36.2500 + 0.0000i

-18.1250 +13.1250i

-18.1250 -13.1250i

a =

0.7000 + 0.0000i

0.5000 + 0.2000i

0.5000 - 0.2000i

k =

[]

Exercise Problems

1. Find the poles and corresponding residues of the function f(z) = 2z+1
z3−3.4z2+1.98z−0.406

.

2. Find the poles and corresponding residues of the function f(z) = z
5z3−3.4z2+z−0.406

.

Practical No. 9

Aim

Find the residue at infinity by using MATLAB code.
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Problem

Find the residue at the infinity of the function f(z) = z2+3
z2−z+2

.

Algorithm

Step1: Write numerator = [1, 0, 3];
Step2: Press Enter
Step3: Write denominator = [1,−1, 2];
Step4: Press Enter
Step5: Write [r, p, k] = residue(numerator, denominator);
Step6: Press Enter
Step7: Write residue sum = sum(r);
Step8: Press Enter
Step9: To display the output, type fprintf(‘The residue at infinity is: %s\n′, num2str
(residue at infinity)).

Matlab Code

numerator = [1 0 3];

denominator = [1 -1 2];

[r, p, k] = residue(numerator, denominator);

residue_sum = sum(r);

residue_at_infinity = -residue_sum;

fprintf(‘The residue at infinity is: %s\n’, num2str(residue_at_infinity))

Output

The residue at infinity is: -1

Exercise Problems

1. Find the residue at the infinity of the function f(z) = z2+1
z2−z+1

.

2. Find the residue at the infinity of the function f(z) = z2+2
z2−z+5

.

Practical No. 10

Aim

Verify Cauchy-Riemann equations, using MATLAB.
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Problem

Verify Cauchy-Riemann equations for the function f(z) = (x2 + y2) + i(2xy) at the origin.

Algorithm

Step1: Define all the variables as symbolic variables i.e.

• Type syms x y real;

• Press Enter

• Type syms u(x,y) v(x,y);

Step2: Type the real and imaginary parts of the function as

• u(x, y) = x2 + y2;

• Press Enter

• v(x, y) = 2 ∗ x ∗ y,

Step3: Compute all partial derivatives

• ux = diff(u, x);

• uy = diff(u, y);

• vx = diff(v, x);

• vy = diff(v, y);

Step4: Check Cauchy-Riemann equations

• cr1=simplify(ux-vy);

• cr2=simplify(uy+vx);

Step5: Use the if-else statement

if isequal(cr1, 0) && isequal(cr2, 0)

disp(‘Cauchy-Riemann equations are satisfied’);

else

disp(‘\Cauchy-Riemann equations are NOT satisfied.’);

end
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Matlab Code

syms x y real;

syms u(x, y) v(x, y);

u(x, y) = x^2;

v(x, y) = 2*x*y;

% Compute partial derivatives

ux = diff(u, x);

uy = diff(u, y);

vx = diff(v, x);

vy = diff(v, y);

cr1 = simplify(ux - vy);

cr2 = simplify(uy + vx);

if isequal(cr1, 0) && isequal(cr2, 0)

disp(‘Cauchy-Riemann equations are satisfied.’);

else

disp(‘Cauchy-Riemann equations are NOT satisfied.’);

end

Output

Cauchy-Riemann equations are NOT satisfied.

Exercise Problems

1. Verify Cauchy-Riemann equations for the function f(z) = (x2 + y3) + i(2xy) at the
origin.

2. Verify Cauchy-Riemann equations for the function f(z) = (x2 − y2) + i(2x) at the
origin.

Practical No. 11

Aim

To find the singularity of the complex-valued function, using MATLAB.

Problem

Find the singularity of f(z) = 1
z2+5z+6

.
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Algorithm

Step1: Type syms z;
Step2: Press Enter
Step3: Type f(z) = 1/(z2 + 5 ∗ z + 6);
Step4: Press Enter
Step5: Type singularity = solve ((z^2+5*z+6)==0,z);
Step6: To display the output use the disp (‘The singularity of the function are:’);
disp(singularity);

Matlab Code

syms z;

f(z) =1/(z^2+5*z+6);

singularity = solve((z^2+5*z+6) == 0, z);

disp(‘The singularity of the function are:’);

disp(singularity);

Output

The singularity of the function are:

-3

-2

Exercise Problems

1. Find the singularity of f(z) = 1
z3+15z+60

.

2. Find the singularity of f(z) = 1
z4+10z+50

.

Practical No. 12

Aim

Check the continuity of a complex-valued function, using MATLAB code.

Problem

Check the continuity of the function f(z) = cos(z), at z0 = 2.
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Algorithm

Step1: Define the complex variable z as a symbolic variable;
Type syms z;
Step2: Type f(z) = cos(z);
Step3: Type z0 = 2;
Step4: Type f z0 = subs(f(z), z, z0); for symbolic substitution
Step5: Type limit f z0 = limit(f(z), z, z0);
Step6: Check the continuity condition using the if-else statement

Matlab Code

syms z;

f(z) = cos(z);

z0 = 2;

f_z0 = subs(f(z), z, z0);

limit_f_z0 = limit(f(z), z, z0);

disp([‘f(z0) = ’, char(f_z0)]);

disp([‘Limit of f(z) as z approaches z0 = ‘, char(limit_f_z0)]);

if isequal(f_z0, limit_f_z0)

fprintf(‘The function is continuous at z = %s\n’,num2str(z0) );

else

fprintf(‘The function is not continuous at z =%s\n’,num2str(z0));

end

Output

f(z0) = cos(2)

Limit of f(z) as z approaches z0 = cos(2)

The function is continuous at z = 2

Exercise Problems

1. Check the continuity of the function f(z) = sin(z), at z0 = 0.

2. Check the continuity of the function f(z) = exp(z), at z0 = 0.

Practical No. 13

Aim

To find the order of zeros of a complex function by using MATLAB code.
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Problem

Find the order of zeros of f(z) = z3 − 1

Algorithm

Step1: Initialize multiplicity=zeros(size(zeros))
Step2: Define z as a symbolic variable
Syms z;
Step3: Define the complex function f sym = z^3− 1;
Step4: Type df sym = diff(f sym, z);
Step5: Use for loop to find the order of zeros
Step6: To display the output by using the “disp command

Matlab Code

multiplicity = zeros(size(zeros));

syms z

f_sym = z^3 - 1;

df_sym = diff(f_sym, z);

for k = 1:length(zeros)

order = 1;

while abs(subs(diff(f_sym, z, order), z, zeros(k))) < 1e-10

order = order + 1;

end

multiplicity(k) = order - 1;

end

disp(‘The order of zeros of function is:’);

disp(order);

Output

The order of zeros of function is:

3

Exercise Problems

1. Find the order of zeros of f(z) = z4 − 5.

2. Find the order of zeros of f(z) = z6 − 1.
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Practical No. 14

Aim

Check whether a complex-valued function function satisfies Cauchy-Riemann equations or
not, using MATLAB.

Problem

Verify Cauchy-Riemann equations for the function f(z) = log(z) at z = 0.

Algorithm

Step1: Define the symbolic variable as syms x y real;
Step2: Type z = x+ 1i ∗ y;
Step3: Define a complex function f(z) = log(z);
Step4: Define the Real part of the function to type u=real(f);
Step5: Define the imaginary part of the function to type v=img(f);
Step6: Compute all partial derivatives to type the following command
du dx = diff(u, x);
du dy = diff(u, y);
dv dx = diff(v, x);
dv dy = diff(v, y);
Step7: Display the all partial derivatives to use the “fprintf command
fprintf(′Partial derivatives:\n′;)
fprintf(′du/dx = %s\n′, du dx);
fprintf(′du/dy = %s\n′, du dy);
fprintf(′dv/dx = %s\n′, dv dx);
fprintf(′dv/dy = %s\n′, dv dy);
Step8: To check the Cauchy Riemann equations use using the if-else statement

if isequal(simplify(du_dx - dv_dy), 0) && isequal(simplify(du_dy + dv_dx), 0)

fprintf(’The function satisfies the Cauchy-Riemann equations.\n’);

else

fprintf(’The function does not satisfy the Cauchy-Riemann equations. \n’);

end

Matlab Code

syms x y real;

z = x + 1i*y;

f = log(z); % Define the complex function
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u = real(f); % Real part of the function

v = imag(f); % Imaginary part of the function

% Compute the partial derivatives

du_dx = diff(u, x);

du_dy = diff(u, y);

dv_dx = diff(v, x);

dv_dy = diff(v, y);

% Display the partial derivatives

fprintf(’Partial derivatives:\n’);

fprintf(’du/dx = %s\n’, du_dx);

fprintf(’du/dy = %s\n’, du_dy);

fprintf(’dv/dx = %s\n’, dv_dx);

fprintf(’dv/dy = %s\n’, dv_dy);

% Check the Cauchy-Riemann equations

fprintf(’\nChecking the Cauchy-Riemann equations:\n’);

if isequal(simplify(du_dx - dv_dy), 0) && isequal(simplify(du_dy + dv_dx), 0)

fprintf(‘The function satisfies the Cauchy-Riemann equations.\n’);

else

fprintf(’The function does not satisfy the Cauchy-Riemann equations

and is not differentiable.\n’);

end

Output

Partial derivatives:

du/dx = x/(x^2 + y^2)

du/dy = y/(x^2 + y^2)

dv/dx = -y/(x^2 + y^2)

dv/dy = x/(x^2 + y^2)

Checking the Cauchy-Riemann equations:

The function does not satisfy the Cauchy-Riemann equations and is not differentiable.

Exercise Problems

1. Verify Cauchy-Riemann equations for the function f(z) = sin(z) at z = 0.

2. Verify Cauchy-Riemann equations for the function f(z) = cos(z) at z = 0.

Practical No. 15

Aim

Find the Laurent series expansion of complex function using the MATLAB code.
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Problem

Find the Laurent series of f(z) = 1
z2+z−2

.

Algorithm

Step1: Define the complex variable z as symbolic variable Syms z;
Step2: Type the complex function
f = 1

z2+z−2

Step3: Define a=0;
Step4: Convert the function into its partial sum by use the command
f partial = partfrac(f, z);
Step5: Split the function into positive power term of z and negative power term of z as
positive powers = taylor(f partial, z, ’Order’, 10);
negative powers = taylor(1/f partial, z, ’Order’, 10);
Step6: Add the positive power term and negative power term of z
L = positive powers + negative powers;
Step7: To display the output use the disp command
disp(’Laurent series expansion:’);
disp(L).

Matlab Code

syms z;

f = 1/(z^2 + z - 2);

a = 0;

f_partial = partfrac(f, z);

positive_powers = taylor(f_partial, z, ’Order’, 10);

negative_powers = taylor(1/f_partial, z, ’Order’, 10);

L = positive_powers + negative_powers;

disp(’Laurent series expansion:’)

disp(L)

Output

Laurent series expansion:

- (341*z^9)/1024 - (171*z^8)/512 - (85*z^7)/256 - (43*z^6)/128 - (21*z^5)/64 -

(11*z^4)/32 - (5*z^3)/16 + (5*z^2)/8 + (3*z)/4 - 5/2

Exercise Problems

1. Find the Laurent series of f(z) = 1
z3+z−5

.
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2. Find the Laurent series of f(z) = 1
z2+2z−6

.

Practical No. 16

Aim

Find the poles of the complex function using MATLAB code .

Problem

Find the poles of f(z) = 1
(z−1)(z−2)

.

Matlab Code

syms z

f = 1/((z-1)*(z-2));

pole = solve(1/f == 0, z);

disp(‘Poles of the function:’)

disp(pole)

Output

Poles of the function:

1

2

Exercise Problems

1. Find the poles of f(z) = 1
(z−2)(z−5)

.

2. Find the poles of f(z) = 1
(z−6)(z−7)

.

Practical No. 17

Aim

Find the integration of complex-valued function using MATLAB code.

Problem

Find the integral of f(z) = 1
(z−2)

on |z| < 3.
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Matlab Code

f = @(z) 1./(z-2);

theta = linspace(0, 2*pi, 100);

r = 3;

z = r * exp(1i * theta);

fz = f(z);

integral = trapz(theta, fz .* (1i * r * exp(1i * theta)));

disp([‘Integral over the closed contour: ’, num2str(integral)]);

Output

Integral over the closed contour: -4.0593e-16+6.2832i

Exercise Problems

1. Find the integral of f(z) = 1
(z−3)

on |z| < 4.

2. Find the integral of f(z) = 1
(z−5)

on |z| < 5.

Practical No. 18

Aim

Find the integration of complex-valued functions with the help of Cauchy integral formula
for derivatives using MATLAB code.

Problem

Find the integral of f(z) = 1
z2+z−2

on | z − 1 |< 1.

Algorithm

Step1: Define z as a symbolic variable Syms z;
Step2: Type the complex function f=1/(z^2+z-2);
Step3: Define the point, radius and the integrand
z0 = 1;
n = 1;
integrand = f/(z-z0)^(n+1);
r=1;
Step4: Type theta and contour as
theta = linspace(0, 2*pi, 10);
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contour = z0 + r*exp(1i*theta);
Step5: Compute the integral using numerical integration
integral value = trapz(contour, subs(integrand, z, contour)) * (contour(2) - contour(1));
Step6: Compute the derivative using the Cauchy Integral Formula
f derivative = factorial(n) / (2*pi*1i) * integral value;
Step7: Display the result using the disp command
disp([’The ’, num2str(n), ’-th derivative of f(z) at z0 = ’, num2str(z0), ’ is:’]);
disp(vpa(f derivative, 6)); % Display the result with 6 significant digits

Matlab Code

syms z;

f = 1/(z^2 + z - 2);

z0 = 1;

n = 1;

integrand = f / (z - z0)^(n + 1);

r = 1;

theta = linspace(0, 2*pi, 10);

contour = z0 + r*exp(1i*theta);

% Compute the integral using numerical integration (trapezoidal rule)

integral_value = trapz(contour, subs(integrand,z,contour))*(contour(2)-contour(1));

% Compute the derivative using the Cauchy Integral Formula

f_derivative = factorial(n) / (2*pi*1i) * integral_value;

% Display the result

disp([‘The ’, num2str(n), ’-th derivative of f(z) at z0 = ’, num2str(z0), ’ is:’]);

disp(vpa(f_derivative, 6)); % Display the result with 6 significant digits

Output

The 1-st derivative of f(z) at z0 = 1 is:

- 0.0079777 + 0.0219185i

Exercise Problems

1. Find the integral of f(z) = 1
z2+z−4

on | z − 1 |< 1.

2. Find the integral of f(z) = 1
z2+z+5

on | z − 1 |< 2.

Practical No. 19
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Aim

Check the Singularity type of the complex-valued function using MATLAB code.

Problem

To check the singularity types of f(z) = 1
(z−1)(z−2)

.

Algorithm

Step1: Define z as a symbolic variable Syms z;
Step2: Define the complex function f = 1/((z-1)*(z-2));
Step3: For singularities of the function
singularities = solve(1/f == 0, z);
Step4: To determine the type of singularity use for loop

disp(‘Singularities and their types:’);

for i = 1:length(singularities)

singularity = singularities(i);

% Check if it is a pole by examining the limit

order = limit((z - singularity)^2 * f, z, singularity);

if isfinite(order)

disp([‘Pole at z = ’, char(singularity), ’ of order 2’]);

else

order = limit((z - singularity) * f, z, singularity);

if isfinite(order)

disp([‘Pole at z = ’, char(singularity), ’ of order 1’]);

else

disp([‘Essential singularity or other type at z = ’, char(singularity)]);

end

end

end

Matlab Code

% Import the symbolic math toolbox

syms z

% Define the complex function

f = 1/((z-1)*(z-2));

% Find the singularities of the function (poles)

singularities = solve(1/f == 0, z);

% Determine the type of singularity

disp(‘Singularities and their types:’);

for i = 1:length(singularities)
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singularity = singularities(i);

% Check if it is a pole by examining the limit

order = limit((z - singularity)^2 * f, z, singularity);

if isfinite(order)

disp([’Pole at z = ’, char(singularity), ’ of order 2’]);

else

order = limit((z - singularity) * f, z, singularity);

if isfinite(order)

disp([’Pole at z = ’, char(singularity), ’ of order 1’]);

else

disp([’Essential singularity or other type at z = ’, char(singularity)]);

end

end

end

Output

Singularities and their types:

Pole at z = 1 of order 2

Pole at z = 2 of order 2

Exercise Problems

1. To check the singularity types of f(z) = 1
(z−2)(z−5)

.

2. To check the singularity types of f(z) = 1
(z−7)(z−8)

.
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Chapter 9

Linear Algebra

Practical No. 1

Aim

To define the matrices in MATLAB.

Problem

Write a MATLAB code for defining the following matrices in the MATLAB

A =

[
5 6
7 8

]
and B =

2 3 4
3 2 1
6 5 8

 .
Algorithm

Step 1: Open the command window of the MATLAB;
Step 2: Define the matrix in the array form. The elements are given row-wise and rows
are separated with semicolons;
Step 3: To enter the elements of the row, put space between the elements of the row or
separate them with commas.

Program

>> A = [5,6; 7,8]

A =

5 6
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7 8

>> A = [2 3 4; 3 2 1; 6 5 8]

A =

2 3 4

3 2 1

6 5 8

Practical No. 2

Aim

To solve the problem of performing addition of the matrices using MATLAB.

Problem

Write a program for finding A+B, A+3I for the following matrix

A =

[
5 6
7 8

]
and B =

[
6 7
8 8

]
.

Algorithm

Step1: Define a function, matrix operations() in the function file of the Matlab program.
This function takes input of the two matrices from the user and then perform the required
operations;
Step2: Inside the function give command to input the matrices;
Step3: The addition of matrices can be done if their rows and columns are equal. So, put
a condition to check the index of both the matrices;
Step4: Perform the required operations and display the result;
Step5: Now, run the function matrix operations() in the command window;
Step6: Enter the matrix A in the array form and press Enter;
Step7: Enter the matrix B in the array form and again press Enter to obtain the results.

Program

function matrix_operations()

% Ask the user to input the matrix A

A = input(‘Enter the matrix A: ’);
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% Ask the user to input the matrix B

B = input(‘Enter the matrix B: ’);

% Check if the matrices A and B are of the same size

[m, n] = size(A);

[p, q] = size(B);

if m ~= p || n ~= q

error(‘Matrices A and B must be of the same size’);

end

% Compute A + B

A_plus_B = A + B;

% Compute the identity matrix I of the same size as A

I = eye(m);

% Compute A + 3I

A_plus_3I = A + 3 * I;

% Display the results

disp(‘Matrix A + B:’);

disp(A_plus_B);

disp(‘Matrix A + 3I:’);

disp(A_plus_3I);

end

Output

matrix_operations

Enter the matrix A: [5 6; 7 8]

Enter the matrix B: [6 7; 8 8]

Matrix A + B:

11 13

15 16

Matrix A + 3I:

8 6

7 11

Practical No. 3
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Aim

To solve the problem of performing multiplication of the matrices using MATLAB.

Problem

Write a program for finding AB, A2B3 for the following matrix

A =

1 3 4
6 1 2
2 4 8

 and B =

2 1 1
3 2 7
2 4 8

 .
Algorithm

Step1: Define a function, matrix multiplications() in the function file of the Matlab pro-
gram. This function takes input of the two matrices from the user and then perform the
required operations;
Step2: Inside the function give command to input the matrices;
Step3: The multiplication of the matrices can be done if the number of columns in A are
equal to number of rows in the B. So, put a command to check this condition;
Step4: Perform the required operations and display the result;
Step5: Now, run the function matrix multiplications() in the command window;

Program

function matrix_multiplications()

% Ask the user to input the matrix A

A = input(‘Enter the matrix A: ’);

% Ask the user to input the matrix B

B = input(‘Enter the matrix B: ’);

% Check if the matrices A and B can be multiplied (for AB)

[m, n] = size(A);

[p, q] = size(B);

if n ~= p

error(‘Number of columns in A must be equal to the number of rows in B for AB’);

end

% Compute AB

AB = A * B;

% Display the results

disp(‘Matrix AB:’);

disp(AB);

if m ~= n

error(‘Matrix A must be square to find A^2’);
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end

if p ~= q

error(‘Matrix B must be square to find B^3’);

end

% Compute A^2

A2 = A * A;

% Compute B^3

B3 = B * B * B;

% Check if the matrices A^2 and B^3 can be multiplied (for A^2B^3)

[r, s] = size(A2);

[t, u] = size(B3);

if s ~= t

error(‘Number of columns in A^2 must be equal to the number of rows in B^3 for A^2B^3’);

end

% Compute A^2B^3

A2B3 = A2 * B3;

disp(‘Matrix A^2B^3:’);

disp(A2B3);

end

Output

matrix_multiplications

Enter the matrix A: [1 3 4;6 1 2;2 4 8]

Enter the matrix B: [2 1 1;3 2 7;9 4 2]

Matrix AB:

47 23 30

33 16 17

88 42 46

Matrix A^2B^3:

38613 18974 23752

39578 19483 24628

72138 35450 44392

Practical No. 4

Aim

To solve the problem of finding the determinant and inverse of the matrices using MATLAB.
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Problem

Write a program for finding the determinant and inverse for the following matrix

A =

[
5 6
7 8

]
.

Algorithm

Step1: Define a function, det inverse() in the function file of the MATLAB program. This
function takes input of the matrix from the user and then perform the required operations;
Step2: Inside the function give command to input the matrix;
Step3: To find determinant of the matrix give command det(A);
Step4: To find the inverse of the matrix check whether the matrix is square or not;
Step5: Check whether the matrix is singular or not;
Step6: Compute the inverse of the matrix using command inv(A);
Step7: Display the results of both operations;
Step8: Run the function det inverse() in the command window;

Program

function det_inverse()

% Ask the user to input the matrix A

A = input(‘Enter the matrix A: ’);

d = det(A);

% Check if the matrix A is square

[m, n] = size(A);

if m ~= n

error(‘Matrix A must be square to find its inverse’);

end

% Check if the matrix A is invertible

if d == 0

error(‘Matrix A is singular and cannot be inverted’);

end

% Compute the inverse of A

A_inv = inv(A);

% Display the results

disp(‘Determinant of matrix A:’);

disp(d);

disp(‘Inverse of matrix A:’);

disp(A_inv);
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end

Output

Enter the matrix A: [5 6;7 8]

Determinant of matrix A:

-2.0000

Inverse of matrix A:

-4.0000 3.0000

3.5000 -2.5000

Practical No. 5

Aim

To solve the problem of finding the transpose of the matrices using MATLAB.

Problem

Write a program for finding the transpose for the following matrix

A =

2 1 1
3 2 7
9 4 2

 .
Algorithm

Step1: Define a function, trans() in the function file of the Matlab program. This function
takes input of the matrix from the user and then perform the transpose of matrix;
Step2: Inside the function give command to input the matrix;
Step3: To find transpose of the matrix give command A’ ;
Step4: Display the results of transpose operation;
Step5: Run the function trans() in the command window;

Program

function Trans()

% Ask the user to input the matrix A

A = input(‘Enter the matrix A: ’);

% Compute the transpose of A
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A_trans = A’;

% Display the results

disp(‘Transpose of matrix A:’);

disp(A_trans);

end

Output

Trans

Enter the matrix A: [2 1 1;3 2 7;9 4 2]

Transpose of matrix A:

2 3 9

1 2 4

1 7 2

Practical No. 6

Aim

To solve the problem of finding trace of the matrices using MATLAB.

Problem

Write a program for finding trace for the following matrix

A =

4 0 2
0 5 2
5 4 10

 .

Algorithm

Step1: Define a function, find trace of matrix() in the function file of the MATLAB pro-
gram. This function takes input of the matrix from the user and then find the trace of the
matrix;
Step2: Inside the function give command to input the matrix;
Step3: To find trace of the matrix, first check whether the matrix is square or not;
Step4: Then compute the trace of the matrix by command, trace(A)”;
Step5: Display the result by fprintf command;
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Program

function find_trace_of_matrix()

% Ask the user to input the matrix A

A = input(‘Enter the matrix A: ’);

% Check if the matrix A is square

[m, n] = size(A);

if m ~= n

error(‘Matrix A must be square to find its trace’);

end

% Compute the trace of A

A_trace = trace(A);

% Display the result

fprintf(‘The trace of the matrix A is: %.2f\n’, A_trace);

end

Output

find_trace_of_matrix

Enter the matrix A: [4 0 2;0 5 2;5 4 10]

The trace of the matrix A is: 19.00

Practical No. 7

Aim

To solve the problem of finding the eigenvalues of the matrices using MATLAB.

Problem

Write a program for finding the eigenvalue for the following matrix2 −3 0
2 −5 0
0 0 3

 .
Algorithm

Step1: Define a function, find eigenvalues() in the function file of the MATLAB program.
This function takes input of the matrix from the user and then find the eigenvalues of the
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matrix;
Step2: Inside the function give command to input the matrix;
Step3: To find eigenvalues of the matrix, first check whether the matrix is square or not;
Step4: Compute the eigenvalues of the matrix by command, eig(A);
Step5: Display the result by disp command;

Program

function find_eigenvalues()

% Ask the user to input the matrix A

A = input(‘Enter the matrix A: ’);

% Check if the matrix A is square

[m, n] = size(A);

if m ~= n

error(‘Matrix A must be square to find its eigenvalues’);

end

% Compute the eigenvalues of A

eigenvalues = eig(A);

% Display the result

disp(‘The eigenvalues of the matrix A are:’);

disp(eigenvalues);

end

Output

find_eigenvalues

Enter the matrix A: [2 -3 0;2 -5 0;0 0 3]

The eigenvalues of the matrix A are:

1

-4

3

Practical No. 8

Aim

To solve the problem of finding the characteristic polynomial of the matrices using MAT-
LAB.
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Problem

Write a program for finding the characteristic polynomial for the following matrix 0 6 8
0.5 0 0
0 0.5 0

 .
Algorithm

Step1: Define a function, find characteristic polynomials() in the function file of the MAT-
LAB program. This function takes input of the matrix from the user and then find the
characteristic polynomial of the matrix;
Step2: Inside the function give command to input the matrix;
Step3: To find the characteristic polynomial of the matrix, first check whether the matrix
is square or not;
Step4: Then compute the characteristic polynomial of the matrix by command, poly(A);
Step5: Display the result by fprintf command;

Program

function find_characteristic_polynomial()

% Ask the user to input the matrix A

A = input(’Enter the matrix A: ’);

% Check if the matrix A is square

[m, n] = size(A);

if m ~= n

error(‘Matrix A must be square to find its characteristic polynomial’);

end

% Compute the characteristic polynomial coefficients of A

char_poly = poly(A);

% Display the result

fprintf(‘The characteristic polynomial of the matrix A is:\n’);

disp(char_poly);

end

Output

find_characteristic_polynomial

Enter the matrix A: [0 6 8;0.5 0 0;0 0.5 00]
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The characteristic polynomial of the matrix A is:

1.0000 -0.0000 -3.0000 -2.0000

Practical No. 9

Aim

To solve the problem of finding the rank of the matrices using MATLAB.

Problem

Write a program for finding the rank for the following matrix10 2
4 5
5 10

 .
Algorithm

Step1: Define a function, find matrix rank() in the function file of the MATLAB program.
This function takes input of the matrix from the user and then find characteristic polyno-
mial of the matrix;
Step2: Inside the function give command to input the matrix;
Step3: Then compute the rank of the matrix by command, rank(A);
Step4: Display the result by fprintf command;

Program

function find_matrix_rank()

% Ask the user to input the matrix A

A = input(‘Enter the matrix A: ’);

% Compute the rank of the matrix A

matrix_rank = rank(A);

% Display the result

fprintf(‘The rank of the matrix A is: %d\n’, matrix_rank);

end
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Output

>> find_matrix_rank

Enter the matrix A: [10,2;4 5;5 10]

The rank of the matrix A is: 2

Practical No. 10

Aim

To solve the problem of linear independence of the column of the matrices using MATLAB.

Problem

Write a MATLAB code to show the linear independence of the column of the following
matrix  2 4 10

3 −7 11
−1 4 10

 .
Program

Algorithm

Step1: Define a function, column linear independence() in the function file of the Matlab
program. This function takes input of the matrix from the user and then show whether the
columns of the matrix are linearly independent or dependent;
Step2: Inside the function give command to input the matrix;
Step3: Then compute the rank of the matrix by command, rank(A);
Step4: The columns of matrix are linearly independent if the number of columns is equal
to rank of matrix, so put a test condition using if command to check if it is equal or not.
Step5: Display the result by disp command.

function column_linear_independence()

% Ask the user to input the matrix A

A = input(‘Enter the matrix A: ’);

% Get the number of rows and columns

[m, n] = size(A); % m = rows, n = columns

% Compute the rank of the matrix A

r = rank(A);
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% Check if the rank is equal to the number of columns

if r == n

disp(‘The columns of the matrix A are linearly independent.’);

else

disp(‘The columns of the matrix A are linearly dependent.’);

end

end

Output

Enter the matrix A: [2 4 10; 3 -7 11;-1 4 10]

The columns of the matrix A are linearly independent.

Practical No. 11

Aim

To solve the problem of linear independence of the row of the matrices using MATLAB.

Problem

Write a program to show the linear independence of the row of the following matrix4 2 3
2 1 4
5 8 2

 .
Algorithm

Step1: Define a function, row linear independence() in the function file of the MATLAB
program. This function takes input of the matrix from the user and then show whether the
rows of the matrix are linearly independent or dependent;
Step2: Inside the function give command to input the matrix;
Step3: Then compute the rank of the matrix by command, rank(A);
Step4: The rows of matrix are linearly independent if the number of rows is equal to rank
of matrix, so put a test condition using if command to check if it is equal or not;
Step5: Display the result by disp command;
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Program

function row_linear_independence()

% Ask the user to input the matrix A

A = input(‘Enter the matrix A: ’);

% Get the number of rows and columns

[m, n] = size(A); % m = rows, n = columns

% Compute the rank of the matrix A

r = rank(A);

% Check if the rank is equal to the number of rows

if r == m

disp(‘The rows of the matrix A are linearly independent.’);

else

disp(‘The rows of the matrix A are linearly dependent.’);

end

end

Output

Enter the matrix A: [4 2 3;2 1 4;5 8 2]

The rows of the matrix A are linearly independent.

Practical No. 12

Aim

To solve the problem to identify the type of the matrices using MATLAB.

Problem

Write a program to check whether the matrix is symmetric or skew-symmetric

A =

1 2 3
2 5 4
3 4 6

 B =

 0 2 −3
−2 0 −4
3 4 0

 C =

1 2 3
4 5 6
7 8 9

 .
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Algorithm

Step1: Define a function, check symmetric skew-symmetric () in the function file of the
Matlab program. This function takes input of the matrix from the user and then perform
the required operations;
Step2: Inside the function give command to input the matrix.
Step3: To check the type of matrices, first we check whether it is square matrix or not;
Step4: Perform the required operations and display the result;

Program

function check_symmetric_skew_symmetric()

% Ask the user to input the matrix A

A = input(‘Enter the matrix A: ’);

% Get the number of rows and columns

[m, n] = size(A);

% Check if the matrix A is square

if m ~= n

error(‘Matrix A must be square to check if it is symmetric or skew-symmetric’);

end

% Check if the matrix is symmetric

if isequal(A, A’)

disp(‘The matrix A is symmetric.’);

elseif isequal(A, -A’)

disp(‘The matrix A is skew-symmetric.’);

else

disp(‘The matrix A is neither symmetric nor skew-symmetric.’);

end

end

Output

check_symmetric_skew_symmetric

Enter the matrix A: [1 2 3;2 5 4;3 4 6]

The matrix A is symmetric.

check_symmetric_skew_symmetric

Enter the matrix A: [0 2 -3;-2 0 -4;3 4 0]

The matrix A is skew-symmetric.

check_symmetric_skew_symmetric

Enter the matrix A: [1 2 3;4 5 6;7 8 9]
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The matrix A is neither symmetric nor skew-symmetric.

Practical No. 13

Aim

To solve the problem to identify the type of the matrices using MATLAB.

Problem

Write a program to check whether the matrix is hermitian or skew-hermitian

A =

 −i −1 1− i
1 −i −1

−1− i 1 −i

 B =

 1 1 + i 2− 3i
−1 + i 2i 1
−2− 3i −1 0

 C =

 1 2 + i 3
2− i 5 4
3 4 6

 .
Algorithm

Step1: Define a function, check hermitian skew- hermitian () in the function file of the
MATLAB program. This function takes input of the matrix from the user and then perform
the required operations;
Step2: Inside the function give command to input the matrix;
Step3: To check the type of matrices, first we check whether it is square matrix or not;
Step4: Perform the required operations using the built-in function, ishermitian and dis-
play the result;

Program

function check_hermitian_skew_hermitian()

% Ask the user to input the matrix A

A = input(‘Enter the matrix A: ’);

% Get the number of rows and columns

[m, n] = size(A);

% Check if the matrix A is square

if m ~= n

error(‘Matrix A must be square to check if it is Hermitian or skew-Hermitian’);

end

% Check if the matrix is Hermitian

if ishermitian(A)

disp(‘The matrix A is Hermitian.’);

elseif ishermitian(A,"skew")

disp(‘The matrix A is skew-Hermitian.’);
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else

disp(‘The matrix A is neither Hermitian nor skew-Hermitian.’);

end

end

Output

Enter the matrix A: [-i -1 1-i;1 -i -1;-1-i 1 -i]

The matrix A is skew-Hermitian.

check_hermitian_skew_hermitian

Enter the matrix A: [1 1+i 2-3i;-1+i 2i 1;-2-3i -1 0]

The matrix A is neither Hermitian nor skew-Hermitian.

check_hermitian_skew_hermitian

Enter the matrix A: [1 2+1i 3;2-1i 5 4;3 4 6]

The matrix A is Hermitian.

Practical No. 14

Aim

To solve the problem to find the basis of column space of the matrices using MATLAB.

Problem

Write a program creating a script file to find the basis of column space of the following
matrix 2 0

3 4
0 5

 .
Algorithm

Step1: Create script file named COLSPACE ;
Step2: Specify the matrix for which we want to find the basis of column space;
Step3: Convert the matrix to symbolic form by command sym(A);
Step4: Use command colspace(A) to find the basis of column space;
Step5: Display the basis for the basis of column space;
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Program

% Ask the user to input the matrix A

A = [2 0; 3 4; 0 5];

disp(’The matrix A is:’);

disp(A);

% Compute the symbolic form of A

A = sym(A);

% Extract the pivot columns from the original matrix A

col_space_basis = colspace(A);

% Display the result

disp(‘The basis for the column space of the matrix A is:’);

disp(col_space_basis);

Output

The matrix A is:

2 0

3 4

0 5

The basis for the column space of the matrix A is:

[ 1, 0]

[ 0, 1]

[-15/8, 5/4]
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Practical No. 15

Aim

To solve the problem to find the row space of the matrices using MATHEMATICA.

Problem

Write a program to find row space of the following matrix
2 −1 3
1 0 1
0 2 −1
1 1 4

 .

Algorithm

Step1: Specify the matrix for which we want to find the row space;
Step2: Use command RowReduce to transform the matrix into its row echelon form;
Step3: Select the rows from the reduced matrix that are not all zeros, as these rows form
the basis for the row space;
Step4: Display the basis for the row space.

Program

matrix = {{2, -1, 3}, {1, 0, 1}, {0, 2, -1}, {1, 1, 4}};

reduced matrix = RowReduce[matrix];

rowSpaceBasis = Select[reducedMatrix, # != {0, 0, 0} &];

Print["Row Reduced Echelon Form of the matrix:"];

Print[MatrixForm[reducedMatrix]];

Print["The row space of the matrix is:"];

Print[MatrixForm[rowSpaceBasis]];

Output

Row Reduced Echelon Form of the matrix:

1 0 0

0 1 0

0 0 1

0 0 0
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The row space of the matrix is:

1 0 0

0 1 0

0 0 1

Practical No. 16

Aim

To solve the problem to verify the Cayley-Hamiltons Theorem using MATLAB.

Problem

Write a program by creating a script file to verify Cayley-Hamiltons Theorem for the
following matrix 2 −1 3

1 0 1
0 2 −1

 .
Algorithm

Step1: Create script file named cayley check;
Step2: Specify the matrix for which we want to verify the Cayley-Hamiltons Theorem;
Step3: Compute dimension and characteristic polynomial of matrix;
Step4: Use for loop to replace the matrix in verify the Cayley-Hamiltons Theorem;
Step5: Display the result;

Program

clear all

clc

disp("Verify the Cayley-Hamiltons theorem in MATLAB")

A = [2 -1 3; 1 0 1; 0 2 -1];

% DimA(1) = no. of Columns & DimA(2) = no. of Rows

DimA = size(A);

charp = poly(A);

% Substitute the matrix A in the characteristic polynomial

P = zeros(DimA);
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for i = 1:(DimA(1) + 1)

P = P + charp(i) * (A^(DimA(1) + 1 - i));

end

disp("Result of the Characteristic equation after substituting the Matrix itself = ")

disp(round(P))

if round(P) == 0

disp("Therefore, Cayley-Hamilton theorem is verified")

end

Output

Verify the Cayley-Hamiltons theorem in MATLAB

DimA =

3 3

charp =

1.0000 -1.0000 -3.0000 -1.0000

Result of the Characteristic equation after substituting the Matrix itself =

0 0 0

0 0 0

0 0 0

Therefore, Caylay-Hamilton theorem is verified

Practical No. 17

Aim

To solve the problem to find the inverse by Cayley-Hamiltons Theorem using MATLAB.
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Problem

Write a program by creating a script file to find the inverse of following matrix by the
Cayley-Hamiltons Theorem−5 −4 2

4 −5 2
2 2 −8

 −5 1 2
4 −3 2
2 1 −4

 .
Algorithm

Step1: Create script file named cayley inverse;
Step2: Ask the user to enter the matrix for which we want to find the inverse by the
Cayley-Hamiltons Theorem;
Step3: Compute the characteristic polynomial of the matrix and find the number of coef-
ficients;
Step4: Use for loop to find inverse by the Cayley-Hamiltons Theorem;
Step5: Display the result with a condition to check if the matrix is singular or not;

Program

disp("Finding Inverse of a Square Matrix using Cayley Hamilton theorem in MATLAB");

A = sym(input(‘Enter the Matrix A: ’));

% To find Coefficients of Characteristic Equation of Matrix ‘A’

cf = charpoly(A);

% To find the Number of Coefficients in

% the Characteristic Equation of Matrix ‘A’

n = length(cf);

% To find the Inverse of A

inverse = cf(1) * A^(n-2);

for i = 2:n-1

inverse = inverse + cf(i) * A^(n-i-1);

end

% Checking whether |A| = 0 or not

if round(cf(n)) == 0

disp(‘Inverse of A does not exist as it is a singular matrix.’);

else

inverse = inverse / (-cf(n));

disp(‘Inverse of A: ’);

disp(inverse);
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end

Output

Finding Inverse of a Square Matrix using Cayley Hamilton theorem in MATLAB

Enter the Matrix A: [-5 4 2;4 -5 2;2 2 -8]

Inverse of A does not exist as it is a singular matrix.

Finding Inverse of a Square Matrix using Cayley Hamilton theorem in MATLAB

Enter the Matrix A: [-5 1 2;4 -3 2;2 1 -4]

Inverse of A:

[-1, -3/5, -4/5]

[-2, -8/5, -9/5]

[-1, -7/10, -11/10]

Practical No. 18

Aim

To solve the problem to identify the type of system of equations using MATLAB.

Problem

Write a program to identify the consistency of following system of equation

2x− y + 3z = 0

x+ z = 0

y − z = 0.

Algorithm

Step1: Create function file named check consistency ;
Step2: Ask the user to enter the system of equation in matrix and vector form;
Step3: Form the augmented matrix, compute its row reduced echelon form using reff ;
Step4: Use for loop to check for the consistency;
Step5: Display the result with a condition to check if the matrix is consistent or not.
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Program

function check_consistency()

% Ask the user to input the coefficient matrix A

A = input(‘Enter the coefficient matrix A: ’);

% Ask the user to input the constant vector b

b = input(‘Enter the constant vector b: ’);

% Form the augmented matrix

augmented_matrix = [A b];

% Compute the reduced row echelon form of the augmented matrix

R = rref(augmented_matrix);

% Get the number of rows and columns of the augmented matrix

[m, n] = size(R);

% Check for inconsistency

consistent = true;

for i = 1:m

if all(R(i, 1:end-1) == 0) && R(i, end) ~= 0

consistent = false;

break;

end

end

% Display the result

if consistent

disp(‘The system of equations is consistent.’);

else

disp(‘The system of equations is inconsistent.’);

end

end

Output

Enter the coefficient matrix A: [2 -1 3;1 0 1;0 1 -1]

Enter the constant vector b: [1; 2; 3]

The system of equations is consistent.

Practical No. 19

Aim

To solve the problem to identify the type of system of equations using MATLAB.
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Problem

Write a program to identify the consistency and type of solution of the following system of
equation

x+ 2y + 3z = 1

4x+ 5y + 6z = 2

7x+ 8y + 9z = 3.

Algorithm

Step1: Create function file named check system consistency ;
Step2: Ask the user to enter the system of equation in matrix and vector form;
Step3: Form the augmented matrix and compute its row reduced echelon form using reff ;
Step4: Use for loop to check for the consistency;
Step5: Finally, display the result with a condition to check if the matrix is consistent or
not and type of solution it posses;
Step6: Now in command window type check system consistency and press Enter.

Program

function check_system_consistency()

% Ask the user to input the coefficient matrix A

A = input(‘Enter the coefficient matrix A: ’);

% Ask the user to input the constant vector b

b = input(‘Enter the constant vector b: ’);

% Check if b is a column vector

if isrow(b)

b = b’; % Convert row vector to column vector if necessary

end

% Get the number of rows and columns of A

[m, n] = size(A);

% Check if the number of rows of A matches the number of elements in b

if length(b) ~= m

error(‘The number of rows in A must match the number of elements in b’);

end

% Form the augmented matrix

augmented_matrix = [A b];

% Compute the reduced row echelon form of the augmented matrix

R = rref(augmented_matrix);

% Compute the rank of A and the augmented matrix

rank_A = rank(A);
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rank_augmented = rank(augmented_matrix);

% Determine consistency

consistent = (rank_A == rank_augmented);

% Display the result

if consistent

if rank_A == n

disp(‘The system of equations is consistent and has a unique solution.’);

else

disp(‘The system of equations is consistent and has infinitely many solutions.’);

end

else

disp(‘The system of equations is inconsistent.’);

end

end

Output

Enter the coefficient matrix A: [1 2 3;4 5 6;7 8 9]

Enter the constant vector b: [1 2 3]

The system of equations is consistent and has infinitely many solutions.
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Practical No. 20

Aim

To solve the problem to determine the roots of equations using MATLAB.

Problem

Write a program to determine the positive and negative roots of the following equation

x3 + 2y + 3z = 1.

Algorithm

Step1: Create function file named descartes rule of signs ;
Step2: Ask the user to input the coefficients of the polynomial as a vector;
Step3: The function count sign changes counts the number of sign changes in the coeffi-
cients of the polynomial. This determines the possible number of positive real roots;
Step4: The coefficients are modified to represent the polynomial P(-x);
Step5: The function count sign changes, count the number of sign changes in the modified
coefficients and determine the possible number of negative real roots;
Step6: The function display possibilities, displays the possible number of real roots based
on the count of sign changes and decreasing by 2 each time;

Program

function descartes_rule_of_signs()

% Ask the user to input the coefficients of the polynomial

coeffs = input(‘Enter the coefficients of the polynomial as a vector: ’);

% Find the number of positive real roots

pos_changes = count_sign_changes(coeffs);

% Find the number of negative real roots

neg_coeffs = coeffs .* ((-1).^(length(coeffs)-1:-1:0));

neg_changes = count_sign_changes(neg_coeffs);

% Display the results

disp(‘Possible number of positive real roots:’);

display_possibilities(pos_changes);

disp(‘Possible number of negative real roots:’);
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display_possibilities(neg_changes);

end

function changes = count_sign_changes(coeffs)

% Initialize the count of sign changes

changes = 0;

for i = 1:length(coeffs)-1

if coeffs(i) * coeffs(i+1) < 0

changes = changes + 1;

end

end

end

function display_possibilities(changes)

% Display the possible number of real roots

while changes >= 0

disp(changes);

changes = changes - 2;

end

end

Output

Enter the coefficients of the polynomial as a vector: [1 -6 11 -6]

Possible number of positive real roots:

3

1

Possible number of negative real roots:

0
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MATLAB

Introduction to MATLAB

MATLAB (Matrix Laboratory) is a high-level programming language and environment
primarily used for numerical computation, data analysis, and visualization. Developed in
the 1980s, MATLAB has become one of the most popular tools in scientific computing and
is widely used in various fields such as mathematics, engineering, physics, and economics.

At its core, MATLAB is designed to work with matrices, which makes it particularly use-
ful for solving mathematical problems that involve linear algebra, abstract algebra, number
theory, and differential equations. MATLABs strength lies in its ability to perform com-
plex mathematical calculations with ease and in a highly efficient manner. In addition
to its numerical capabilities, MATLAB also supports the development of algorithms, data
visualization, and the integration of various hardware systems for real-time computation.

MATLAB Basics

MATLAB operates through a command-line interface, where users input commands that
are executed immediately, and results are displayed in the Command Window. Users can
also write scripts, which are sets of commands saved in a file for repeated use. MATLAB’s
syntax is simple and intuitive, making it accessible for beginners while being powerful
enough for more advanced users. In command window, we run code by pressing Enter key.
The script can be run by pressing Ctrl + Enter or pressing green triangle button.

Variables and Operators

In MATLAB, variables are assigned using the equal sign (=). For example, the following
command assigns the value 5 to the variable A:

A = 5

MATLAB also supports standard arithmetic operations, such as:

• Addition: +

• Subtraction: -
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• Multiplication: *

• Division: /

• Exponentiation: ^

Linear Algebra in MATLAB

MATLAB was originally designed for matrix computation, and its functions are highly
optimized for performing linear algebra operations.

Creating Matrices

Matrices are fundamental in MATLAB and can be created using square brackets. For
example, the following code creates a 3x3 matrix:

A = [123; 456; 789]

This matrix represents:

A =

1 2 3
4 5 6
7 8 9


Each row of the matrix is separated by a semicolon.

Matrix Operations

MATLAB provides several built-in functions to perform common matrix operations:

• Matrix addition: C = A + B

• Matrix multiplication: C = A * B

• Matrix transpose: C = A’

• Matrix inverse: C = inv(A)

• Determinant: det(A)

• Eigenvalues and eigenvectors: [V, D] = eig(A)

For instance, to compute the eigenvalues and eigenvectors of a matrix A, you would use:

[V,D] = eig(A)

where V is the matrix of eigenvectors and D is the diagonal matrix of eigenvalues.

*

Abstract Algebra in MATLAB
MATLAB is also useful in abstract algebra, particularly for tasks such as polynomial

manipulation, solving systems of equations, and performing matrix operations that are
central to group and ring theory.
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Polynomials

In MATLAB, polynomials are represented by vectors of coefficients. For example, the
polynomial 2x3 + 3x2 + x+ 5 is represented as:

p = [2, 3, 1, 5]

To evaluate a polynomial at a specific value of x, say x = 2, we use:

polyval(p, 2)

Solving Systems of Linear Equations

In abstract algebra, solving systems of linear equations is a common task. MATLAB
provides a simple way to solve a system of equations Ax = b using the backslash operator:

x = A\b

where A is the coefficient matrix and b is the column vector of constants.

Number Theory in MATLAB

MATLAB is also well-suited for number-theoretic computations, such as prime number
generation, modular arithmetic, and greatest common divisor (GCD).

Prime Numbers

The function isprime(n) checks if the number n is prime. To generate all prime numbers
up to a given limit, we can use:

primes(limit)

GCD and LCM

To calculate the greatest common divisor (GCD) of two numbers, we use:

gcd(36, 60)

which returns 12, the GCD of 36 and 60. Similarly, to compute the least common multiple
(LCM), we use:

lcm(36, 60)

which returns 180, the LCM of 36 and 60.

Differential Equations in MATLAB

MATLAB provides extensive support for solving differential equations, including ordinary
differential equations (ODEs) and partial differential equations (PDEs). The function ode45
is widely used to solve first-order ODEs.
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Solving ODEs

For example, to solve the first-order ODE:

dy

dt
= −2y, y(0) = 1

in MATLAB, we define the function and solve it using the following code:

ode = @(t, y) -2*y;

[t, y] = ode45(ode, [0 5], 1);

plot(t, y);

This code solves the ODE over the time interval [0, 5] and plots the solution.
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MATHEMATICA

Introduction to MATHEMATICA

MATHEMATICA is a comprehensive computational software system developed by Wolfram
Research. It is used extensively for symbolic computation, numerical computation, data
analysis, visualization, and algorithm development. MATHEMATICA is known for its
ability to perform sophisticated calculations with ease, and it has found wide applications
in mathematics, physics, engineering, economics, and other fields.

The system is designed to be highly versatile, allowing users to perform symbolic manip-
ulations, solve complex equations, perform statistical analysis, and generate visualizations.
MATHEMATICAs integrated environment supports a wide variety of mathematical and
technical functions, making it an invaluable tool for students, researchers, and profession-
als.

MATHEMATICA Basics

MATHEMATICA uses a language that is both powerful and user-friendly. The system is
built around a symbolic computation engine, which allows users to perform algebraic ma-
nipulations, including simplifying expressions, solving equations, and working with polyno-
mials, matrices, and more. The MATHEMATICA environment allows for both interactive
and programmatic use, enabling users to write scripts for repeatable tasks or simply input
commands in real-time.

MATHEMATICA supports both functional and procedural programming, and its syn-
tax is relatively intuitive. The system uses a notebook interface, where each document
can contain code, text, and graphical output, making it a great tool for creating inter-
active reports and presentations. The code is run by pressing SHIFT + ENTER in
MATHEMATICA notebook.

Basic Operations

In MATHEMATICA, simple arithmetic operations are straightforward. For example, to
perform basic addition, subtraction, multiplication, and division, one can use:

2 + 3, 5 - 3, 4 * 2, 6 / 2
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MATHEMATICA also provides the power operator (for exponentiation), which is denoted
by ^:

23 (which gives 8)

Additionally, the Sqrt function is used for square roots:

Sqrt[16] (which gives 4)

Linear Algebra in MATHEMATICA

MATHEMATICA is equipped with an extensive library of functions for performing matrix
and vector operations. The system allows easy manipulation and computation of matrices,
vectors, and other linear algebra concepts.

Creating Matrices

In MATHEMATICA, matrices are created using curly braces. For example, a 3x3 matrix
can be created as follows:

A = {{1, 2, 3} , {4, 5, 6} , {7, 8, 9}}

This creates the matrix:

A =

1 2 3
4 5 6
7 8 9


Matrix Operations

MATHEMATICA offers a wide variety of matrix operations. Some common operations
include:

• Matrix addition: A + B

• Matrix multiplication: A . B

• Matrix transpose: Transpose[A]

• Matrix inverse: Inverse[A]

• Determinant: Det[A]

• Eigenvalues and eigenvectors: Eigenvalues[A] and Eigenvectors[A]

For example, to compute the eigenvalues of a matrix A, use:

Eigenvalues[A]

This command will return a list of the eigenvalues of the matrix A.
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Abstract Algebra in MATHEMATICA

MATHEMATICA is well-suited for abstract algebra, including operations involving poly-
nomials, groups, rings, and fields.

Polynomials

In MATHEMATICA, polynomials are represented as expressions. For example, the poly-
nomial 2x3 + 3x2 + x+ 5 is written as:

2x3 + 3x2 + x+ 5

To evaluate a polynomial at a specific value of x, say x = 2, use the ReplaceAll function:

2x3 + 3x2 + x+ 5 /. x -> 2

which will output the value of the polynomial when x = 2.

Solving Systems of Linear Equations

MATHEMATICA provides a simple function to solve systems of linear equations. Given a
system of equations Ax = b, you can use the function LinearSolve[A, b] to solve for x:

LinearSolve[A, b]

Number Theory in MATHEMATICA

MATHEMATICA offers powerful tools for performing number-theoretic computations such
as prime factorization, modular arithmetic, and computing greatest common divisors
(GCD).

Prime Numbers

MATHEMATICA can be used to generate prime numbers and check if a number is prime.
For example:

• To check if a number is prime, use PrimeQ[n], where n is the number to be tested.

• To generate a list of primes up to a given number, use Prime[Range[n]].

GCD and LCM

To calculate the greatest common divisor (GCD) of two numbers, use:

GCD[36, 60]

which will return 12, the GCD of 36 and 60. Similarly, to compute the least common
multiple (LCM), use:

LCM[36, 60]

which returns 180, the LCM of 36 and 60.
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Differential Equations in MATHEMATICA

MATHEMATICA offers sophisticated tools for solving both ordinary differential equations
(ODEs) and partial differential equations (PDEs). The function DSolve is commonly used
for solving ODEs symbolically.

Solving ODEs

For example, to solve the first-order ODE:

dy

dt
= −2y, y(0) = 1

you can use the following command in MATHEMATICA:

DSolve[y’[t] == -2 y[t], y[t], t]

This will return the solution y(t) = e−2t.
MATHEMATICA can also handle systems of ODEs and higher-order differential equa-

tions, and provides numerous options for controlling the solution process.
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Python

Introduction to Python

Python is a high-level, interpreted programming language known for its simplicity, read-
ability, and versatility. Created by Guido van Rossum in the late 1980s and released in
1991, Python has become one of the most popular programming languages in the world.
It is widely used in a variety of fields such as web development, data analysis, machine
learning, scientific computing, automation, and more.

Pythons syntax is designed to be intuitive and easy to understand, which makes it an
excellent language for both beginners and experienced developers. It supports multiple pro-
gramming paradigms, including procedural, object-oriented, and functional programming.
Additionally, Python has a vast ecosystem of libraries and frameworks, making it an essen-
tial tool for many technical domains, including mathematics and scientific computation.

Python Basics

Python code is written in text files with the extension .py, and it can be executed in various
environments, including interactive shells, scripts, or integrated development environments
(IDEs) such as PyCharm or Jupyter Notebooks.

Pythons syntax is concise, and it emphasizes readability, making it easier for program-
mers to understand and maintain code. Some of the basic constructs in Python include
variables, operators, data types, loops, and conditional statements.

Variables and Operators

In Python, variables are assigned using the equal sign (=). For example, to assign the value
5 to the variable A, you would write:

A = 5

Python supports a wide range of operators for performing arithmetic operations, such as:

• Addition: +

• Subtraction: -
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• Multiplication: *

• Division: /

• Exponentiation: **

For example:
5 + 3 = 8, 5 ∗ 3 = 15, 2 ∗ ∗3 = 8

Linear Algebra in Python

Python is widely used in the mathematical community for tasks such as solving linear sys-
tems, matrix operations, and vector manipulations. The NumPy library is the core package
for numerical computations in Python, providing efficient data structures such as arrays
and matrices and functions to manipulate them.

Creating Arrays and Matrices

In Python, arrays and matrices can be created using the numpy library. To create a simple
1D array, use:

import numpy as np

A = np.array([1, 2, 3])

This creates the array:
A =

[
1 2 3

]
To create a 2D matrix, use:

B = np.array([[1, 2], [3, 4]])

This creates the matrix:

B =

[
1 2
3 4

]
Matrix Operations

Python, through NumPy, provides a wide range of functions to perform matrix operations:

• Matrix addition: C = A + B

• Matrix multiplication: C = np.dot(A, B) or C = A @ B

• Matrix transpose: C = A.T

• Matrix inverse: C = np.linalg.inv(A)

• Determinant: det = np.linalg.det(A)

• Eigenvalues and eigenvectors: eigvals, eigvecs = np.linalg.eig(A)

For example, to compute the determinant of a matrix A, use:

det = np.linalg.det(A)
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Abstract Algebra in Python

Python can be used for performing various tasks in abstract algebra, such as polynomial
manipulation, solving systems of equations, and working with groups and rings.

Polynomials

Polynomials in Python can be represented using NumPy or the sympy library for symbolic
computation. For example, the polynomial 2x3 + 3x2 + x+ 5 can be created as:

from sympy import symbols, Poly

x = symbols(’x’)

poly = Poly(2*x**3 + 3*x**2 + x + 5, x)

To evaluate the polynomial at x = 2, use:

poly.subs(x, 2)

Solving Systems of Linear Equations

Python makes it easy to solve systems of linear equations. Given a system of equations
Ax = b, you can solve it using NumPy as follows:

A = np.array([[2, 1], [1, 3]])

b = np.array([5, 7])

x = np.linalg.solve(A, b)

This returns the solution vector x.

Number Theory in Python

Python has excellent libraries for number theory tasks, such as generating prime numbers,
calculating the greatest common divisor (GCD), and performing modular arithmetic.

Prime Numbers

Python can be used to check if a number is prime and to generate a list of primes. The
sympy library provides an easy way to work with prime numbers:

from sympy import isprime, primerange

isprime(7) (returns True)

list(primerange(1, 20)) (returns [2, 3, 5, 7, 11, 13, 17, 19])
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GCD and LCM

To calculate the greatest common divisor (GCD) of two numbers, use:

import math

math.gcd(36, 60) (returns 12)

Similarly, to compute the least common multiple (LCM), use:

math.lcm(36, 60) (returns 180)

Differential Equations in Python

Python offers powerful libraries like SciPy for solving ordinary differential equations
(ODEs). The scipy.integrate module contains functions for numerical integration, such
as odeint, which can be used to solve ODEs.

Solving ODEs

To solve the first-order ODE:
dy

dt
= −2y, y(0) = 1

you can define the ODE function and use odeint to solve it:

from scipy.integrate import odeint

def model(y, t): return -2 * y

t = np.linspace(0, 5, 100)

y0 = 1

y = odeint(model, y0, t)

This will solve the ODE and return the solution as an array of values for y(t).

NumPy: Numerical Computation in Python

NumPy is one of the most important libraries in Python for numerical computing. It pro-
vides support for multidimensional arrays, matrices, and a large collection of high-level
mathematical functions to operate on these arrays.
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Creating NumPy Arrays

NumPy arrays are more efficient than Python’s built-in lists for mathematical operations.
You can create a NumPy array as follows:

import numpy as np

A = np.array([1, 2, 3, 4, 5])

This creates a 1D array:
A =

[
1 2 3 4 5

]
For a 2D array (or matrix):

B = np.array([[1, 2], [3, 4], [5, 6]])

This creates the matrix:

B =

1 2
3 4
5 6


Array Operations

NumPy supports element-wise operations on arrays, such as:

• Addition: A + B

• Multiplication: A * B

• Scalar multiplication: A * 3

It also supports more complex operations like dot products, transposition, and linear
algebra functions.

Matplotlib: Visualization in Python

Matplotlib is a plotting library for creating static, interactive, and animated visualizations
in Python. It is widely used for plotting graphs and charts, including line plots, bar charts,
histograms, scatter plots, and more.

Basic Plotting with Matplotlib

To create a basic line plot, you can use the following commands:

import matplotlib.pyplot as plt

x = np.linspace(0, 10, 100)

y = np.sin(x)

plt.plot(x, y)

plt.show()

This will generate a plot of the sine function from 0 to 10.
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Customization of Plots

Matplotlib allows extensive customization of plots, including adding labels, titles, and
legends:

plt.plot(x, y, label="Sine Wave")

plt.title("Sine Function")

plt.xlabel("x")

plt.ylabel("y")

plt.legend()

plt.show()
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